油气藏如何形成的?

 我来答
石油工业出版社
2019-02-01 · 石油工业专业内容提供
石油工业出版社
向TA提问
展开全部

石油和天然气的生成、运移和聚集是油气藏形成过程中密切相关的三个阶段。储集层、圈闭构造和油气的运移是油气藏形成不可缺少的条件。本节将介绍油气的生成、储集层、油气的运移、圈闭以及油气藏的类型等内容。

一、油气的生成石油和天然气的主要成分是碳氢化合物。它究竟是怎样生成的?过去曾有多种说法,但基本上可以归纳为两种,即有机成因说和无机成因说。

1.无机成因说无机成因说认为,石油是在地壳深处高温、高压下,由无机碳和氢经过化学作用而形成的。在实验室中,通过无机合成可将简单的碳和氢的化合物合成为石油;另外,在火山喷出的气体和熔岩流中也含有烃类;许多无机体上也有烃类存在。无机成因说大致包括乙炔说、碳化物说、宇宙说、岩浆说等。

无机成因学说主要是以在特殊实验条件下可以合成石油的化学反应现象和对地球内部物质的假定为依据的,因而不能被大多数学者接受。但在人们能洞悉地球内部结构之前,无机成因说的存在有利于加深对石油成因的认识,对石油成因的研究有一定的促进意义。

2.有机成因说有机成因说认为,石油和天然气是在一定条件下由沉积岩中的有机物质转化而来的。其主要证据是:第一,世界上已发现的油气田99%以上都分布在沉积岩中;第二,石油具有生命有机物质所特有的旋光性;第三,石油中存在有生物标志化合物;第四,在实验室中利用生物的脂肪、蛋白质、碳水化合物可以获得烃类物质;第五,石油成分的复杂性;第六,在近代海相和湖泊相沉积中发现了有机物质转化为油气的过程等。

油气有机成因的现代科学理论认为,原始有机物质在一定的环境和条件下被埋藏下来,在一定的深度、温度等适宜条件下,经历了生物化学、热催化、热裂解、高温变质等阶段,陆续转化为石油和天然气。根据成油深度上的差别,有机成因说又可分为浅成说和深成说。前者认为油气是在沉积埋藏不深的早期形成的,而后者则认为油气是有机质埋藏到一定深度、温度条件下才形成的。

3.生成油气的原始物质石油成因理论虽然很多,但石油有机成因说目前普遍为人们所接受。大量的有机物质是油气生成的物质基础;而促使有机物质保存,并向油气转化的条件是外因。生成油气的有机物质是海洋和湖泊中的动、植物遗体,其中以水生的浮游生物(如鱼类、藻类)和各种微生物(有孔虫、介形虫)等富含脂肪、蛋白质、碳水化合物的有机质为主。这些生物遗体的大部分,或是成为他种生物的食料,或是变为二氧化碳而游离于大气之中,只有很少部分随着细小的沉积物沉积于海洋或湖泊的低洼地带。尽管如此,只要考虑到生物界的广泛性、繁殖速度快以及时间长久等因素,地球上的有机物质在数量上是能够满足大量的油气生成的。

进入沉积物中的有机物质,在缺乏氧气的环境下得以保存。随着环境的还原程度不断加强,有机物质在一定的物理、生物化学作用下进行分解,完成“去氧加氢、富集碳”的过程,形成分散的碳氢化合物——石油和天然气。

4.生油层能够生成石油和天然气的岩层,称为生油气岩或生油气母岩、生油气源岩(简称生油岩)。由生油气岩组成的地层,即为生油气层(简称生油层),这是自然界生成石油和天然气的实际场所。沉积岩中的泥岩、页岩、砂质泥岩、泥质粉砂岩、碳酸盐岩等细粒均可组成良好的生油层。根据岩性不同,生油岩分为两大类——泥质生油岩和碳酸盐岩生油岩。这些细粒的生油岩是在较宁静的水体中沉积下来的。这种环境也适于生物的大量繁殖。另外,有机质沉降到海底、湖底后,被细粒岩石埋藏,有利于保存下来。

生油岩的颜色以褐、灰褐、深灰、黑色等暗色为主,灰、灰绿色次之。这里所说的颜色不是沉积岩的继承色或次生色,而是能反映当时沉积环境和有机质丰度的原生色。暗色常反映沉积时的还原环境。这使大量有机质得到保存,使铁元素处于低价状态;红色常反映氧化环境,它使有机质遭受氧化,破坏殆尽。

生油层的分布受岩相古地理条件所控制。生油层皆是有规律地出现,并与一定的岩相带有关。对于湖相来说,较深、深湖相是主要的生油相带。那里沉积了细粒的泥质岩类。由于水体较深,具有静水沉积、水流弱、波浪小、还原环境等有利的生油条件。大量低等生物的繁殖,是形成良好生油层的基础。对海相来说,浅海相或潮间低能相带、潮下低能带的碳酸盐岩层和泥质岩层具备良好的生油条件。这些区域深度不大、水体宁静、阳光充足、生物茂盛,岩石富含生物化石和有机质。我国四川盆地的二叠系和三叠系的碳酸盐岩地层,就是浅海相碳酸盐岩生油层的例子。

二、储集层和盖层大量油气勘探及开发实践,纠正了人们最初以为地下有油湖、油河之类的错误认识。逐渐知道石油和天然气不是储存在地下的什么油湖、油河之中,而是储存在那些具有相互连通的孔隙、裂隙的岩层内,好像水充满于海绵里一样。

具有一定孔隙度和渗透性,能够储存油气等流体,并可在其中流动的岩层称为储集层。储集层具备两个基本特性——孔隙性和渗透性。

1.储集层岩石的孔隙性和渗透性1) 孔隙度储集层岩石是由大小不一的岩石颗粒、矿物颗粒胶结而成的。被胶结的颗粒之间存在着微细的孔隙,如同我们常见的建筑上用的砖一样。把一块3kg的砖放在水中浸泡以后再称重,它就可能变成3.5 kg,其中增加的0.5 kg是因为水浸入到了砖的孔隙中。同样道理,油气就储存在油层岩石的孔隙里。为了衡量储集层岩石中孔隙总体积的大小,提出了孔隙度的概念,用以表示岩石中孔隙的发育程度。

储集层岩石中孔隙的总体积占岩石总体积的比值叫做孔隙度。用百分数表示,即:

(2-1)式中 φ——孔隙度,%;Vp——岩石中孔隙总体积,m3;Vr——岩石总体积,m3。

储集层岩石的孔隙度可以用实验方法求得。孔隙度大,说明岩石颗粒之间的容积大,储存流体的空间就大;孔隙度小,岩石颗粒之间的容积小,储存流体的场所就小。

若储集层为油层,那么油层孔隙里是不是都盛满了油呢?不是的。一般来说,孔隙里含有油、气和水。油层孔隙里含油体积与孔隙体积的比值,叫做油层的含油饱和度,即:

(2-2)式中 So——含油饱和度,%;Vo——岩石中原油的体积,m3。

可以通过直接钻井取心,再由实验求得油层的含油饱和度。含油饱和度越高,说明油层中的含油越多。这个参数也是计算油田储量的重要数据。用Sw表示含水饱和度,含水饱和度即油层孔隙中含水体积与孔隙体积的比值。

2)渗透率渗透率是岩石允许流体通过能力的一种量度。严格地讲,自然界的一切岩石在足够大的压力差下都具有一定的渗透性。通常我们所讲的渗透性岩石与非渗透性岩石,是指在地层压力条件下流体能否通过岩石。在一般情况下,砂岩、砾岩、多孔的石灰岩、白云岩等储集层为渗透性岩层,而泥岩、石膏、硬石膏等为非渗透性岩层。岩石渗透性的好坏在石油工业中常用渗透率来衡量。

实验表明,流体通过岩心时,若岩心两端的压差不太大,单位时间内流体通过岩心的体积与岩心两端的压差及岩心的横截面积成正比,而与流体的粘度及岩心长度成反比,即:

(2-3)式中 K——岩石的绝对渗透率,μm2;Q——液体流量,cm3/s;A——岩心横截面积,cm2;L——岩心长度,cm;Δp——岩心两端的压差,105Pa;μ——液体粘度,mPa·s。

(2-3)式被称为达西直线渗流定律,是在假定岩石孔隙中只有一种液体流动,而且这种液体不与岩石起任何物理、化学反应的条件下得出的。当流体的流动符合达西直线渗流定律时,求得的K值就是岩石的绝对渗透率。但在实际油层内,流体的渗流情况要复杂得多。地层中常为两相(油—气、油—水、气—水)、甚至三相(油—气—水)流体并存。因此,当油层内存在多种流体时,必须对绝对渗透率的概念进行修正。如果一块岩心被25%的束缚水和75%的原油所饱和,那么对于油的渗透率将比用100%的原油饱和时所测得的渗透率要低。当某一相的饱和度降低时,此相的渗透率也要降低。多相流体共存时,岩石对其中每种流体的渗透率称为该相的有效渗透率或相渗透率。用符号Ko、Kg、Kw分别表示油、气、水的有效渗透率。

有效渗透率不仅与岩石的性质相关,也与其中流体的性质及数量比例有关。在实际应用中,也经常采用相对渗透率的概念,定义为有效渗透率与绝对渗透率之比值。在特定的含油(气、水)饱和度条件下,油、气、水的相对渗透率可通过下列各式计算,即:

(2-4)

(2-5)

(2-6)式中 Kro——油的相对渗透率;Krg——气的相对渗透率;Krw——水的相对渗透率。

通常,岩石对每相的有效渗透率总是小于该岩石的绝对渗透率。各相有效渗透率的总和也总是低于绝对渗透率,或者说各相的相对渗透率之和小于1.0。

图2-11为某一储集层在油水两相渗流时,油相和水相的相对渗透率随含水饱和度的变化曲线。相对渗透率曲线可采用岩心实验方法确定,也可以根据储集层岩石的润湿性、岩性以及一些基础参数采用相关经验公式进行计算得出。

图2-11 油水两相相对渗透率曲线2.储集层的类型及基本特征目前世界上绝大部分的油气储量集中在沉积岩储集层中,沉积岩储集层中又以碎屑岩储集层和碳酸盐岩储集层最为重要。只有少量油气储集在岩浆岩和变质岩中。石油地质学按岩石类型把储集层分为三大类:碎屑岩储集层、碳酸盐岩储集层及其他岩石类储集层。

1)碎屑岩储集层碎屑岩储集层是世界上各主要含油气区的重要储集层之一。如前苏联的西西伯利亚盆地的各大油田、科威特的布尔干油田、委内瑞拉的玻利瓦尔湖岸油田、美国的普台德霍湾油田和我国的大庆油田等许多特大油田,它们的储集层都是碎屑岩储集层。

碎屑岩储集层的岩石类型有砾岩、砂砾岩、粗砂岩、中砂岩、细砂岩和粉砂岩。目前,我国所发现的碎屑岩油气藏以中、细砂岩为主。碎屑岩储集层的孔隙类型以原生的粒间孔隙为主(图2-12),孔隙度一般为5%~40%。此外还有次生的溶蚀孔隙、胶结物重结晶而出现的晶间孔隙、矿物的解理缝、层理缝和层间缝等。其储油物性除受沉积环境、岩石成分和结构构造控制外,在漫长的成岩历史中,地下温度、压力、孔隙水成分等的变化,都对储集层孔隙有着重要的影响,这些因素主要包括压实作用、溶解作用和胶结作用等。

图2-12 碎屑岩储集层中颗粒和孔隙分布示意图

砂岩体是碎屑岩储集层的主体,是指在某一沉积环境下形成的,具有一定形态、岩性和分布特征,并以砂质岩为主的沉积岩体。与油气有关的砂岩体主要包括冲积扇砂岩体、三角洲砂岩体、海岸砂岩体、河流砂岩体、浊积砂岩体和湖泊砂岩体等。

含油砂岩中,渗透性好、含油饱和度高并能产出工业油流的砂岩体称作油砂体。它是油层中最小的含油单元,也是注水开发油田控制油水运动相对独立的单元。油砂体是陆相碎屑岩油层最显著的特点之一,因此在编制油田开发方案、进行开发动态分析和开发调整时,必须研究油砂体的性质、形态、分布状况等。油砂体常以两种形式出现:一种是在单层内部呈不连续分布的透镜状油砂体;另一种是各个砂体互相连通而形成复合的油砂体,称为连通体。连通体可以由几个甚至十几个砂体组成,形成统一的油水运动系统。主要的油气储量都分布在这种连通体内,也是开发的主要对象。

2)碳酸盐岩储集层碳酸盐岩储集层单位体积内的储集空间小,但厚度大。以石灰岩、白云岩为主的碳酸盐岩储集层,其连通孔隙度一般为1%~3%,个别储集层可达到10%。

碳酸盐岩储集层一般都是浅海相沉积。岩性比较稳定,分布面积广,厚度大。如四川盆地震旦系白云岩的厚度达500~1200m;任丘油田元古界白云岩的厚度达2140m。因此,尽管单位体积内的储集空间小,但因厚度大,整个储集层内的储集空间还是很大的。

碳酸盐岩储集层中,缝洞分布具有不均匀性,同时又具有组系性和方向性(图2-13)。缝洞在碳酸盐岩储集岩内随处可见,而且类型多、大小悬殊。大洞、大缝的渗透率极高,产出高;小洞、小缝和周围岩石的渗透率极低,产量也低。

图2-13 裂缝性储集层

3)其他类型的储集层除碎屑岩和碳酸盐岩以外的各类储集层,如岩浆岩、变质岩、粘土岩等储集层都归为其他类型储集层。尽管这类储集层的岩石类型很多,但在其中储存的油气量在世界油气总储量中只占很小的比例,其意义远不如碎屑岩和碳酸盐岩储集层。国内外都在这类储集层中获得了一定量的油气。这就拓展了研究油气储集层的领域。到目前为止,我国已在火山岩、结晶岩、粘土岩里获得了工业性油气流,并具有一定的生产能力。

3.盖层任何一个区域,要形成油气藏只具有生油层和储集层是不够的。要使生油层中生成的油气运移至储集层不发生逸散,还必须具备不渗透的盖层。盖层是指位于储集层之上能够封隔储集层,避免其中的油气向上逸散的保护层。盖层的好坏直接影响油气在储集层中的聚集和保存。

自然界中,任何盖层对气态和液态的烃类都只有相对的隔绝性。在地层条件下的烃类聚集都具有大小不同的天然能量,能驱使烃类向周围逸散。因而必须有良好的盖层封闭才能阻止烃类散失,使其聚集起来形成油气藏。

盖层之所以具有封隔作用,是由于岩性致密、无裂缝、渗透性差,并且岩石具有较高的排替压力。排替压力是指某一岩样中的润湿相流体,被非润湿相流体开始驱替所需要的最低压力。由于沉积岩多被水相润湿,油气要通过它进行运移,必须首先驱走其中的水,才能进入其中。如果驱使石油运移的动力未达到进入盖层所需的排替压力,石油就被挡在盖层之下。岩石排替压力的大小与孔隙和喉道尺寸有直接关系,孔喉越小,其值越大。

常见盖层岩石有页岩、泥岩、盐岩、石膏和无水石膏等。页岩、泥岩盖层常与碎屑岩储集层并存;盐岩、石膏盖层大多发育在碳酸盐岩剖面中。在构造变动微弱的地区,裂缝不发育,致密的泥灰岩及石灰岩也可充当盖层。

三、圈闭圈闭是指能够阻止油气继续运移,并储集遮挡油气使其聚集的场所。圈闭是由储集层、盖层和遮挡物三部分组成的。圈闭的基本功能就是能够聚集油气。在具备充足油源的前提下,圈闭的存在是形成油气藏的必要条件。因此,研究圈闭的形成、类型及其与油气聚集的关系是很重要的。

根据控制圈闭形成的地质因素,可将圈闭分为三大类:构造圈闭、地层圈闭和岩性圈闭。

1.构造圈闭构造运动使地层发生变形或变位,即褶皱或断裂。在条件具备时,这些褶皱和断裂就可以形成构造圈闭,如背斜圈闭和断层圈闭等(图2-14、图2-15)。

图2-15 断层圈闭

图2-14 背斜圈闭

2.地层圈闭上、下两套岩层呈连续沉积、无沉积间断,这种接触关系叫整合。它反映了地壳较稳定的沉降,不断接受沉积。

如果地壳上升使老地层露出水面,遭受风化剥蚀、造成沉积间断。以后再下降、继续接受沉积,就形成新地层与下伏老地层之间不连续接触的不整合地层圈闭。在那里,相继沉积下来的岩石部分被剥蚀掉,然后被不渗透的岩帽所覆盖。新、老地层成角度接触的称为角度不整合,反映了地壳在新地层沉积之前发生过褶皱运动。在角度不整合中,不整合上部的新岩层覆盖了褶皱剥蚀边缘或下部的倾斜层,形成圈闭。如果新、老地层之间虽有沉积间断,但仍呈平行接触的叫平行不整合,亦称假整合。平行不整合反映了地壳呈均衡上升或下降,所以新、老地层的产状基本一致(图2-16)。

图2-16 不整合示意图

3.岩性圈闭在沉积盆地中,由于沉积条件的差异而造成储集层在横向上发生岩性变化,并被不渗透岩层遮挡时,即形成岩性圈闭。如砂岩尖灭和砂岩透镜体等(图2-17)。这种变化是由地层沉积时非寻常的砂和粘土分布所致,如河流三角洲的砂坝。

图2-17 岩性圈闭示意图

上述是三种基本圈闭类型,还有许多圈闭是由褶皱、断层、孔隙性变化及其他情况组合而形成的复合圈闭。

四、油气运移与聚集1.油气运移油气在生油层形成后呈分散状态,在各种外力作用下,运移到附近的圈闭中聚集起来,与圈闭构成统一的整体,形成油气藏。由此可见,油气运移是形成油气藏的不可缺少的阶段。油气在地层内的任何移动都称为油气运移。生油层中生成的油气向储集层内的运移称为初次运移。油气进入储集层以后的一切运移都称为二次运移,包括油气在储集层内部的运移,也包括油气沿断层面、裂缝的运移(图2-18)。

图2-18 油气运移示意图

尽管油气是能够流动的流体,但要促使油气沿着各种通道流动,必须有动力。动力来源主要有压实作用力、构造运动力、水动力、浮力和毛管压力等。它们在油气运移的两个阶段中起着不同的作用。其中压实作用力对油气的初次运移起主导作用,其他动力对油气的二次运移起主要作用。

2.油气聚集油气在圈闭中聚集,形成油气藏的过程称为油气聚集。它是油气生成、运移以及储集层和圈闭构造等多种因素有机配合的结果。充足的油气来源是盆地形成储量丰富的油气藏的物质基础。良好的储集层是油气运移、聚集的基本条件。但要形成油气藏还必须具有通向生油层的输导层和良好的封盖层,也就是要具有良好的生、储、盖组合。即生油层中生成的油气能够及时地运移到储集层中,同时盖层的质量和厚度又能保证运移到储集构造中的油气不会逸散。

五、油气藏类型1.油气藏的概念油气藏是指在单一圈闭中具有相同压力系统的油气的基本聚集。圈闭中只聚集了油,称为油藏;只聚集了天然气,称为气藏;同时聚集了油和游离气则称为油气藏(图2-19)。

图2-19 油气藏示意图

在目前技术和经济条件下,具有开采价值的油气藏为工业性油气藏。西方国家称之为商业性油气藏。但这个概念是随着国家的需要和技术条件的不同而变化的。当国家急需油气的时候,不具工业价值的油气藏也要开采,此时经济价值就处于从属地位了。

2.油气藏的类型据有关资料记载,世界上已经发现的油气藏有数万个,类型多种多样。为了更有效地指导勘探和开发油气资源,有必要对已发现的油气藏进行科学分类。目前国内外使用的油气藏分类方法很多,归纳起来有四种。

(1)根据日产量大小分为高产油气藏、中产油气藏、低产油气藏和非工业性油气藏。

(2)根据油气藏形态可分为层状油气藏(如背斜油气藏)、块状油气藏(如古潜山油气藏)和不规则油气藏。不规则油气藏中油气分布无一定形态,如断层油气藏、地层油气藏和岩性油气藏等。

(3)根据烃类组成可分为油藏、油气藏、气藏和凝析气藏。圈闭中烃类只以液态形式存在的称为油藏;圈闭中既有液态的油,又有游离的天然气则称作油气藏;圈闭中只有天然气存在的称为气藏;在高温高压的地层条件下,烃类以气态存在,开采时随着温度和压力的降低,到达地面后成为凝析油。这种气藏称为凝析(油)气藏。

(4)根据圈闭成因可分为构造油气藏、地层油气藏和岩性油气藏。油气聚集在由于构造运动而使地层发生变形或变位所形成的圈闭中,称为构造油气藏;油气聚集在由于地层超覆或不整合覆盖而形成的圈闭中,称为地层油气藏;油气聚集在由于沉积条件的改变导致储集层岩性发生横向变化而形成的圈闭中,称为岩性油气藏。

为了有利于勘探和开发,对油气藏的分类应遵循两条基本原则:第一,分类要有科学性,即分类要反映圈闭的成因类型和形成条件以便于寻求规律性;第二,分类要有实用性,能更有效地指导油气的勘探和开发工作。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式