用等价无穷小量代换求极限
3个回答
高粉答主
2020-01-02 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
原式=lim(x->0) [(1/3)*xe^x]*x/[1-√(1+cosx-1)]
=lim(x->0) [(1/3)*x^2]/[-(1/2)*(cosx-1)]
=(2/3)*lim(x->0) (x^2)/[(x^2)/2]
=4/3
=lim(x->0) [(1/3)*x^2]/[-(1/2)*(cosx-1)]
=(2/3)*lim(x->0) (x^2)/[(x^2)/2]
=4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->0
分子
xe^x =x +o(x)
(1+xe^x)^(1/3) = [ 1+ x+o(x) ] ^(1/3) = 1+ (1/3)x +o(x)
(1+xe^x)^(1/3) -1 =(1/3)x +o(x)
x.[(1+xe^x)^(1/3) -1 ]=(1/3)x^2 +o(x^2)
分母
cosx = 1-(1/2)x^2 +o(x^2)
√cosx = √[1-(1/2)x^2 +o(x^2)] = 1 -(1/4)x^2 +o(x^2)
1-√cosx =(1/4)x^2 +o(x^2)
lim(x->0) x.[ (1+xe^x)^(1/3) -1 ] /[1- √cosx]
=lim(x->0) (1/3)x^2 /[(1/4)x^2]
=4/3
分子
xe^x =x +o(x)
(1+xe^x)^(1/3) = [ 1+ x+o(x) ] ^(1/3) = 1+ (1/3)x +o(x)
(1+xe^x)^(1/3) -1 =(1/3)x +o(x)
x.[(1+xe^x)^(1/3) -1 ]=(1/3)x^2 +o(x^2)
分母
cosx = 1-(1/2)x^2 +o(x^2)
√cosx = √[1-(1/2)x^2 +o(x^2)] = 1 -(1/4)x^2 +o(x^2)
1-√cosx =(1/4)x^2 +o(x^2)
lim(x->0) x.[ (1+xe^x)^(1/3) -1 ] /[1- √cosx]
=lim(x->0) (1/3)x^2 /[(1/4)x^2]
=4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |