已知:如图,在△ABC中,AC=BC,△ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,又AE=1/2BD。
求证:BD是∠ABC的平分线图在http://hi.baidu.com/%B7%E7%B2%D0%D4%B9/album/item/e76ae655960c7b5e367...
求证:BD是∠ABC的平分线 图在 http://hi.baidu.com/%B7%E7%B2%D0%D4%B9/album/item/e76ae655960c7b5e367abeb6.html
急。。 展开
急。。 展开
3个回答
展开全部
解:证明:延长AE、BC,相交于点F
∵∠ACB=90°
∴∠ACF=180°-∠ACB=90°
∵∠ACB=∠ACF,∠1+∠F=90°
∵AE⊥BE
∴∠AEB=∠FEB=90°
∴∠2+∠F=90°
∴∠1=∠2
在△ACF和△BCD中
{∠1=∠2
{AC=BC
{∠ACF=∠ACB
∴△ACF≌△BCD(ASA)
∴AF=BD
∵AE=1/2BD
即AE=EF
在△BEA和△BEF中
{AE=EF
{∠AEB=∠FEB
{BE=BE
∴△BEA≌BEF(SAS)
即BD是∠ABC的平分线
老师评讲的了,正确的
∵∠ACB=90°
∴∠ACF=180°-∠ACB=90°
∵∠ACB=∠ACF,∠1+∠F=90°
∵AE⊥BE
∴∠AEB=∠FEB=90°
∴∠2+∠F=90°
∴∠1=∠2
在△ACF和△BCD中
{∠1=∠2
{AC=BC
{∠ACF=∠ACB
∴△ACF≌△BCD(ASA)
∴AF=BD
∵AE=1/2BD
即AE=EF
在△BEA和△BEF中
{AE=EF
{∠AEB=∠FEB
{BE=BE
∴△BEA≌BEF(SAS)
即BD是∠ABC的平分线
老师评讲的了,正确的
展开全部
延长AE并与BC延长线相交于F,
〈DCB=〈ACF=〈90度,
AC=BC(已知),
〈CDB=〈EDA(对顶角相等),
〈EAD=180度-90度-〈EDA,
〈CBD=180度-90度-〈CDB,
故〈FAC=〈DBC,
RT△AFC≌RT△BDC,
BD=AF,
而AE=BD/2(已知),
AF=2AE,
E是AD中点,
AE=EF,〈FEB=〈AEB=90度,BE=BE,
RT△ABE≌RT△FBE,
∴〈ABE=〈FBE,即BD是〈ABC的平分线。
〈DCB=〈ACF=〈90度,
AC=BC(已知),
〈CDB=〈EDA(对顶角相等),
〈EAD=180度-90度-〈EDA,
〈CBD=180度-90度-〈CDB,
故〈FAC=〈DBC,
RT△AFC≌RT△BDC,
BD=AF,
而AE=BD/2(已知),
AF=2AE,
E是AD中点,
AE=EF,〈FEB=〈AEB=90度,BE=BE,
RT△ABE≌RT△FBE,
∴〈ABE=〈FBE,即BD是〈ABC的平分线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我不知道怎庅解
不过图有些ugly
不过图有些ugly
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询