相似三角形问题如图?

在三角形abc中,∠A=∠ABC=∠ADB=70°,CD=BE,求∠BDE____°?... 在三角形abc中,∠A=∠ABC=∠ADB=70°,CD=BE,求∠BDE____°? 展开
 我来答
帐号已注销
2020-01-30 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:334万
展开全部
三角分别相等,三边成比例的两个三角形叫做相似三角形(similar triangles)
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
三角分别相等,三边成比例的两个三角形叫做相似三角形(similar triangles)
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。全等三角形可以被理解为相似比为1的相似三角形。相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
相似三角形的性质
定义 相似三角形的对应角相等,对应边成比例。
定理 相似三角形任意对应线段的比等于相似比。
定理 相似三角形的面积比等于相似比的平方。

相似三角形的判定
类比全等三角形的判定定理,可以得出下列结论:
定理 两角分别对应相等的两个三角形相似。
定理 两边成比例且夹角相等的两个三角形相似。
定理 三边成比例的两个三角形相似。
定理 一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论:
推论 三边对应平行的两个三角形相似。[1]
推论 一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的特殊情况
1.凡是全等的三角形都相似
全等三角形是特殊的相似三角形,相似比为1。反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似
由此,所有的等边三角形都相似。
1. 相似三角形对应角相等,对应边成比例。
2. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3. 相似三角形周长的比等于相似比。
4. 相似三角形面积的比等于相似比的平方。
由 4 可得:相似比等于面积比的算术平方根。
5. 相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6. 若a/b =b/c,即b²=ac,b叫做a,c的比例中项
7. a/b=c/d等同于ad=bc.
8. 不必是在同一平面内的三角形里。
推论一:腰和底对应成比例的两个等腰三角形相似。
推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
希望我能帮助你解疑释惑。
sjh5551
高粉答主

2020-01-30 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8110万
展开全部
设 AC = BC = a,则 AB = BD = 2acos70°,
△ABC ∽ ADB, AD/AB = AB/AC , AD = AB^2/AC = 4a(cos70°)^2

CD = BE = AC-AD = a[1-4(cos70°)^2]
∠DBE = 70°- 40° = 30°,记 ∠BDE = t, 则 ∠BED = 150°-t
BE/sint = BD/sin(150°-t)
a[1-4(cos70°)^2]/sint = (2acos70°)/sin(150°-t)
[1-4(cos70°)^2]sin(150°-t) = 2cos70°sint
[1-4(cos70°)^2](cost+√3sint) = 4cos70°sint
[1-4(cos70°)^2]cost = {4cos70°- √3[1-4(cos70°)^2]}sint
tant = [1-4(cos70°)^2]/{4cos70°- √3[1-4(cos70°)^2]}
追问
感谢你hh 知乎看到各种解法
被这道题难倒 梦回初中qwq
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式