高等数学定积分求解两题
1个回答
展开全部
(1)
∫(0->1) dx/(x^2-x-2)
=∫(0->1) dx/[(x-2)(x+1)]
=(1/3) ∫(0->1) [1/(x-2)-1/(x+1)] dx
=(1/3)[ ln|(x-2)/(x+1)| ]|(0->1)
=(1/3)[ ln(1/2) - ln2 ]
=-(2/3)ln2
(2)
let
u= (arctan√x)^2
du = 2arctan√x . [1/(1+x) ] [ 1/(2√x) ] dx
= {arctan√x /[√x.(1+x) ] } dx
∫(0->+∞) arctan√x /[ √x. (1+x) ] dx
=[ (arctan√x)^2 ]|(0->+∞)
=(1/4)π^2
∫(0->1) dx/(x^2-x-2)
=∫(0->1) dx/[(x-2)(x+1)]
=(1/3) ∫(0->1) [1/(x-2)-1/(x+1)] dx
=(1/3)[ ln|(x-2)/(x+1)| ]|(0->1)
=(1/3)[ ln(1/2) - ln2 ]
=-(2/3)ln2
(2)
let
u= (arctan√x)^2
du = 2arctan√x . [1/(1+x) ] [ 1/(2√x) ] dx
= {arctan√x /[√x.(1+x) ] } dx
∫(0->+∞) arctan√x /[ √x. (1+x) ] dx
=[ (arctan√x)^2 ]|(0->+∞)
=(1/4)π^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询