11个回答
展开全部
对f求导可得f'(x)=(x^2 - 2mx + 1)/x^2,要想使f(x)有两个极值,则其导函数必须有两个以上的零点,即f'(x)=0至少有两个根。由于定义域为x>0,令f'(x)=0,得x^2 - 2mx + 1 =0,它有两个不同实根,所以(2m)^2-4*1*1 = 4m^2-4>0,所以m>1或m<-1;
由根与系数关系可以解出x1=m+√(m^2-1),x2=m-√(m^2-1) (√是根号);x1+x2=2m,x1x2=1;
K = (f(x1)-f(x2))/(x1-x2) = 1+(1/x1x2)-2m*ln(x1/x2)/(x1-x2)
= 1 + 1 - m*ln( 2m^2 + 2m√( m^2-1) -1) ;
令上式=2-2m,则1 + 1 - m*ln( 2m^2 + 2m√( m^2-1) -1) / √(m^2-1) = 2-2m
即 ln(2m^2+2m√(m^2-1)-1) = 2√(m^2-1)
记g(m) = ln(2m^2+2m√(m^2-1)-1) - 2√(m^2-1)
对其求导可得g'(m) = 2 - 2m/√(m^2-1)
令g'(m)=0,等式无解。也就是说当m>1时,g'(m)<0,m<-1时,g'(m)>0,
g(m)在小于-1区间上递增,在大于1区间上递减。
当m=±1时g(m)=0,由于在(1,+∞)上单调递减,在(-∞,-1)上单调递增,因此g(m)=0没有除±1以外的其他根。又由于前面求出m>1或m<-1,因此,g(m)=0无解。因此不存在m使得K=2-2m
由根与系数关系可以解出x1=m+√(m^2-1),x2=m-√(m^2-1) (√是根号);x1+x2=2m,x1x2=1;
K = (f(x1)-f(x2))/(x1-x2) = 1+(1/x1x2)-2m*ln(x1/x2)/(x1-x2)
= 1 + 1 - m*ln( 2m^2 + 2m√( m^2-1) -1) ;
令上式=2-2m,则1 + 1 - m*ln( 2m^2 + 2m√( m^2-1) -1) / √(m^2-1) = 2-2m
即 ln(2m^2+2m√(m^2-1)-1) = 2√(m^2-1)
记g(m) = ln(2m^2+2m√(m^2-1)-1) - 2√(m^2-1)
对其求导可得g'(m) = 2 - 2m/√(m^2-1)
令g'(m)=0,等式无解。也就是说当m>1时,g'(m)<0,m<-1时,g'(m)>0,
g(m)在小于-1区间上递增,在大于1区间上递减。
当m=±1时g(m)=0,由于在(1,+∞)上单调递减,在(-∞,-1)上单调递增,因此g(m)=0没有除±1以外的其他根。又由于前面求出m>1或m<-1,因此,g(m)=0无解。因此不存在m使得K=2-2m
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
选 B
f'(x)=-x²-2x+3=-(x+3)(x-1)
可得 f(x)在(-∞,-3]上单减,值域[-9,+∞)
在[-3,1]上单增,值域[-9,5/3]
在[1,+∞)上单减,值域(-∞,5/3]
且f(x)有3个零点a、0、b,且a<-3<0<1<b
设t=|f(x)|,则可得出t=|f(x)|的大致图像.
a(f(x))²+|f(x)|+1=0有6个不同实根,则t=|f(x)|≠0,a<0
得 at²+t+1=0 只有一个正根
由t=|f(x)|的图像得a可取的充要条件是:0<t<5/3
a=-(1/t)²-(1/t) 设u=1/t
a=-u²-u=-(u+1/2)²+1/4,u>3/5
其值域是(-∞,-24/25)
所以 a的取值范围是(-∞,-24/25),选B
f'(x)=-x²-2x+3=-(x+3)(x-1)
可得 f(x)在(-∞,-3]上单减,值域[-9,+∞)
在[-3,1]上单增,值域[-9,5/3]
在[1,+∞)上单减,值域(-∞,5/3]
且f(x)有3个零点a、0、b,且a<-3<0<1<b
设t=|f(x)|,则可得出t=|f(x)|的大致图像.
a(f(x))²+|f(x)|+1=0有6个不同实根,则t=|f(x)|≠0,a<0
得 at²+t+1=0 只有一个正根
由t=|f(x)|的图像得a可取的充要条件是:0<t<5/3
a=-(1/t)²-(1/t) 设u=1/t
a=-u²-u=-(u+1/2)²+1/4,u>3/5
其值域是(-∞,-24/25)
所以 a的取值范围是(-∞,-24/25),选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
从已知条件算出来两个向量的数量积为3即AC.BC=3
AC^2-BC^2=4
而(AB)^2=(AC-BC)^2=4
得出
AC=√7,BC=√3
后面的就不知道怎么算了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这题目好像有点问题:CB+(1/2)CD是向量,【向量的最小值】是指向量的模吗?
若是,则应该写成求∣CB+(1/2)CD∣的最小值;这个好求;若是求向量的最小值则
没法求。
若是,则应该写成求∣CB+(1/2)CD∣的最小值;这个好求;若是求向量的最小值则
没法求。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询