求解一道高数定积分题目,谢谢
1个回答
展开全部
设 u = √(e^x - 1),则 x = ln(u²+1),dx = 2udu/(u²+1),u = 1 → √3
那么,原积分就变换为:
=∫2udu/[(u²+1) * u]
=∫2du/(u²+1)
=2∫du/(u²+1)
=2arctan(u)|u = 1 → √3
=2 * [arctan(√3) - arctan(1)]
=2 * (π/3 - π/4)
=π/6
那么,原积分就变换为:
=∫2udu/[(u²+1) * u]
=∫2du/(u²+1)
=2∫du/(u²+1)
=2arctan(u)|u = 1 → √3
=2 * [arctan(√3) - arctan(1)]
=2 * (π/3 - π/4)
=π/6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询