求这两道计算题的步骤
3个回答
展开全部
①解
∫[0,2]|1-x|dx
=∫[0,1](1-x)dx+∫[1,2](x-1)dx
=x|[0,1]-(1/2)x^2|[0,1]+(1/2)x^2|[1,2]-x|[1,2]
=1-(1/2)+(3/2)-1
=1
②解
∫1/(1+√x)dx
令t=√x,x=t^2,dx=2t
2∫t/(1+t)dt
=2∫(t+1-1)(t+1)dt
=2∫dt-2∫1/(t+1)dx
=2t-2ln|t+1|
=(2√x-2ln|√x+1|)|[0,4]
=4-2ln3
∫[0,2]|1-x|dx
=∫[0,1](1-x)dx+∫[1,2](x-1)dx
=x|[0,1]-(1/2)x^2|[0,1]+(1/2)x^2|[1,2]-x|[1,2]
=1-(1/2)+(3/2)-1
=1
②解
∫1/(1+√x)dx
令t=√x,x=t^2,dx=2t
2∫t/(1+t)dt
=2∫(t+1-1)(t+1)dt
=2∫dt-2∫1/(t+1)dx
=2t-2ln|t+1|
=(2√x-2ln|√x+1|)|[0,4]
=4-2ln3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询