e的2x次方与sin²x乘积的不定积分求解,详细过程
5个回答
展开全部
∫e^x*sin^2xdx
=(1/2)*∫e^x*(1-cos2x)dx
=(1/2)*∫e^xdx-(1/2)*∫e^x*cos2xdx
令∫e^x*cos2xdx=A
则(1/2)*∫e^xdx-(1/2)*∫e^x*cos2xdx
=(1/2)*e^x-(1/2)*A
=(1/2)*e^x-(1/2)*∫cos2xd(e^x)
=(1/2)*e^x-(1/2)*cos2x*e^x+(1/2)*∫e^xd(cos2x)
=e^x*sin^2x-∫e^x*sin2xdx
=e^x*sin^2x-∫sin2xd(e^x)
=e^x*sin^2x-e^x*sin2x+∫e^xd(sin2x)
=e^x*(sin^2x-sin2x)+2∫e^x*cos2xdx
=e^x*(sin^2x-sin2x)+2A
即(1/2)*e^x-(1/2)*A=e^x*(sin^2x-sin2x)+2A
(5/2)*A=(1/2-sin^2x+sin2x)*e^x
A=e^x*(1-2sin^2x+2sin2x)/5+C,其中C是任意常数
所以∫e^x*sin^2xdx=(1/2)*e^x-(1/2)*A+C
=(1/2)*e^x*[1-(1-2sin^2x+2sin2x)/5]+C
=e^x*(2+sin^2x-sin2x)/5+C
=(1/2)*∫e^x*(1-cos2x)dx
=(1/2)*∫e^xdx-(1/2)*∫e^x*cos2xdx
令∫e^x*cos2xdx=A
则(1/2)*∫e^xdx-(1/2)*∫e^x*cos2xdx
=(1/2)*e^x-(1/2)*A
=(1/2)*e^x-(1/2)*∫cos2xd(e^x)
=(1/2)*e^x-(1/2)*cos2x*e^x+(1/2)*∫e^xd(cos2x)
=e^x*sin^2x-∫e^x*sin2xdx
=e^x*sin^2x-∫sin2xd(e^x)
=e^x*sin^2x-e^x*sin2x+∫e^xd(sin2x)
=e^x*(sin^2x-sin2x)+2∫e^x*cos2xdx
=e^x*(sin^2x-sin2x)+2A
即(1/2)*e^x-(1/2)*A=e^x*(sin^2x-sin2x)+2A
(5/2)*A=(1/2-sin^2x+sin2x)*e^x
A=e^x*(1-2sin^2x+2sin2x)/5+C,其中C是任意常数
所以∫e^x*sin^2xdx=(1/2)*e^x-(1/2)*A+C
=(1/2)*e^x*[1-(1-2sin^2x+2sin2x)/5]+C
=e^x*(2+sin^2x-sin2x)/5+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2∫e^xcos2xdx=1/2e^xcos2x+∫e^xsin2xdx
=1/2e^xcos2x+e^xsin2x-2∫e^xcos2xdx
把-2∫e^xcos2xdx移到左边
5/2∫e^xcos2xdx=1/2e^xcos2x+e^xsin2x
∫e^xcos2xdx=1/5e^x(cos2x+2sin2x)
=1/2e^xcos2x+e^xsin2x-2∫e^xcos2xdx
把-2∫e^xcos2xdx移到左边
5/2∫e^xcos2xdx=1/2e^xcos2x+e^xsin2x
∫e^xcos2xdx=1/5e^x(cos2x+2sin2x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = ∫e^x(sinx)^2 dx = (1/2)∫e^x(1-cos2x)dx
= (1/2)∫e^xdx - (1/2)∫e^xcos2xdx
= (1/2)e^x - (1/2)∫e^xcos2xdx
I1= ∫e^xcos2xdx = ∫cos2xde^x = e^xcos2x + 2∫e^xsin2xdx
= e^xcos2x + 2∫sin2xde^x = e^xcos2x + 2e^xsin2x - 4I1
解得 I1 = (1/5)e^x(cos2x+2sin2x)
则 I = (1/2)e^x - (1/10)e^x(cos2x+2sin2x) + C
= (1/2)∫e^xdx - (1/2)∫e^xcos2xdx
= (1/2)e^x - (1/2)∫e^xcos2xdx
I1= ∫e^xcos2xdx = ∫cos2xde^x = e^xcos2x + 2∫e^xsin2xdx
= e^xcos2x + 2∫sin2xde^x = e^xcos2x + 2e^xsin2x - 4I1
解得 I1 = (1/5)e^x(cos2x+2sin2x)
则 I = (1/2)e^x - (1/10)e^x(cos2x+2sin2x) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |