函数既是凸函数 又是凹函数 证明该函数是线性函数
2个回答
展开全部
证明:
函数f(x)在定义域内连续,
在定义域内,任意设两点x1,x2,(x1≠x2)
根据凸函数的性质,
f(x1)+f(x2)≧f(x1+x2)/2
再根据凹函数的性质,
f(x1)+f(x2)≦f(x1+x2)/2
因此,f(x1)+f(x2)=f(x1+x2)/2,
满足这样条件的f(x)一定可以写成,f(x)=ax+b。
故,f(x)是线性函数。
数学:
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
分析,
要加上条件:函数在定义域内连续。
f(x)是凸函数,又是凹函数,证明:f(x)一定是线性函数。
证明:
函数f(x)在定义域内连续,
在定义域内,任意设两点x1,x2,(x1≠x2)
根据凸函数的性质,
f(x1)+f(x2)≧f(x1+x2)/2
再根据凹函数的性质,
f(x1)+f(x2)≦f(x1+x2)/2
因此,f(x1)+f(x2)=f(x1+x2)/2,
满足这样条件的f(x)一定可以写成,f(x)=ax+b。
故,f(x)是线性函数。
要加上条件:函数在定义域内连续。
f(x)是凸函数,又是凹函数,证明:f(x)一定是线性函数。
证明:
函数f(x)在定义域内连续,
在定义域内,任意设两点x1,x2,(x1≠x2)
根据凸函数的性质,
f(x1)+f(x2)≧f(x1+x2)/2
再根据凹函数的性质,
f(x1)+f(x2)≦f(x1+x2)/2
因此,f(x1)+f(x2)=f(x1+x2)/2,
满足这样条件的f(x)一定可以写成,f(x)=ax+b。
故,f(x)是线性函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询