初二数学: 菱形的定义和特征 ,如何识别菱形?
展开全部
定义:在一个平面内一组邻边相等的平行四边形是菱形
性质:1、对角线互相垂直且平分,并且每条对角线平分一组对角
2、四条边都相等
3、对角相等,邻角互补
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
特征:顺次连接菱形各边中点为矩形、正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形。
性质:1、对角线互相垂直且平分,并且每条对角线平分一组对角
2、四条边都相等
3、对角相等,邻角互补
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
特征:顺次连接菱形各边中点为矩形、正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形。
展开全部
定义
在一个平面内
一组邻边相等的平行四边形是菱形(rhombus)
编辑本段性质
1、对角线互相垂直且平分,并且每条对角线平分一组对角;
2、四条边都相等;
3、对角相等,邻角互补;
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
编辑本段判定
1、一组邻边相等的平行四边形是菱形
2、四边相等的四边形是菱形
3、对角线互相垂直且平分的四边形是菱形
.
4、对角线互相垂直的平行四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形
,对角线相等的四边形的中点四边形定为菱形。)
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
在一个平面内
一组邻边相等的平行四边形是菱形(rhombus)
编辑本段性质
1、对角线互相垂直且平分,并且每条对角线平分一组对角;
2、四条边都相等;
3、对角相等,邻角互补;
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
编辑本段判定
1、一组邻边相等的平行四边形是菱形
2、四边相等的四边形是菱形
3、对角线互相垂直且平分的四边形是菱形
.
4、对角线互相垂直的平行四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形
,对角线相等的四边形的中点四边形定为菱形。)
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在一个平面内,一组邻边相等的平行四边形是菱形。
特征:1、对角线互相垂直且平分,并且每条对角线平分一组对角;
2、四条边都相等;
3、对角相等,邻角互补;
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。识别时,主要是看邻边是否相等,对角线是否互相垂直且平分。
特征:1、对角线互相垂直且平分,并且每条对角线平分一组对角;
2、四条边都相等;
3、对角相等,邻角互补;
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。识别时,主要是看邻边是否相等,对角线是否互相垂直且平分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
菱形判定定理可以判定菱形。特征和定义上面都有。
翻翻书,这个基本的就不要在这里问了。
翻翻书,这个基本的就不要在这里问了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询