最大公因数和最小公倍数怎么求有几种方法算

 我来答
巨树花池娴
2019-12-08 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1120万
展开全部
最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
求最大公约数主要有分解质因数法、公式法。
一、最大公因数求法
1、质因数分解法
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
2、短除法
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
3、辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数。
4、更相减损法
刘徽《九章算术》
更相减损法:也叫更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
二、最小公倍数算法
1、分解质因数法
先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
2、公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
三、最大公因数、最小公倍数简介
1、最大公因数
也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
2、最小公倍数
两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。
芒同书同戌
2019-09-13 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:1036万
展开全部
求最大公因数和最小公倍数的方法:
一、
特殊情况:
1
、倍数关系
的两个数,最大公因数是较小的数,最小公倍数是较大的数.(如;
6

12
的最大公因数是
6
,最小公倍数是
12
.)
2
、互质关系
的两个数,最大公因数是1,最小公倍数是它们的乘积.(如,
5

7
的最大公因数时
1
,最小公倍数是
5
×
7=35

二、一般情况:
1
求最大公因数:
列举法、单列举法、分解质因数法、短除法、除法算式法.

列举法
:如,求
18

27
的最大公因数
先找出两个数的所有因数
18
的因数有:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
飒爽还灵敏丶雪花o
2023-12-31
知道答主
回答量:6
采纳率:0%
帮助的人:811
展开全部
最大公因数常见求法分为质因数分解法、短除法、辗转相除法、更相减损法;最小公倍数的求法为分解质因数法和公式法。最大公因数求法:一、质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来...3.普通关系(即不是以上两种关系的):分解质因数,求最大公倍数;用大数翻倍法,就是把较大的数翻倍,可以整除较小的数的就是最小公倍数求最小公倍数和最大公因数的最简便的方法有哪些1观察法:比如两个数都是偶数那么可以同时除以2后再观察各位是5和0可以同时除52.最准确的方法相减法在古代叫左右相更法求A与B最大公因数:...(1)列举法(这种方法一般用于较小的两个数或初学者):就是将这两个数的倍数都按次序列举,直到首次出现相同倍数为止,这个数就是最小公倍数.(2)分解质因数法:就是将两个数各自分解成质因数的形式,把公因数只乘...②两个数是互质关系的:如果两个数是互质数,那么这两个数的最大公因数就是1.例如:7和15的最大公因数是1.2、两个数最小公倍数的求法:(1)列举法(这种方法一般用于较小的两个数或初学者):就是将这两个数...最简便的有三种情况:1.互质关系:1是最大公倍数;两数积是最小公倍数2.倍数关系:小的那个数是最大公倍数;大的那个数是最小公倍数3.普通关系(即不是以上两种关系的):分解质因数,求最大公倍数;用大数翻倍法,就...则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。二、最小公倍数算法1、分解质因数法先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数...一、几种常见的求两个数的最小公倍数的方法。1、找倍数法(列举法)。方法1、找出两个数的倍数,再找出两个数的公倍数和最小公倍数例如:求6和8的最小公倍数。6的倍数有:6,12,18,24,30,36...求最大公因数和最小公倍数的方法:一、特殊情况:1、倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数.(如;6和12的最大公因数是6,最小公倍数是12.)2、互质关系的两个数,最大...60和42的最小公倍数=2*3*2*5*7=420。这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如23),把各自独有的质因数全部乘进去所得的积就是这两个数的最小公倍数。相同的质因数的乘积就是最大公因数...《》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
東长瞳V
2023-12-31
知道答主
回答量:6
采纳率:0%
帮助的人:810
展开全部
最大公因数常见求法分为质因数分解法、短除法、辗转相除法、更相减损法;最小公倍数的求法为分解质因数法和公式法。最大公因数求法:一、质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来...3.普通关系(即不是以上两种关系的):分解质因数,求最大公倍数;用大数翻倍法,就是把较大的数翻倍,可以整除较小的数的就是最小公倍数求最小公倍数和最大公因数的最简便的方法有哪些1观察法:比如两个数都是偶数那么可以同时除以2后再观察各位是5和0可以同时除52.最准确的方法相减法在古代叫左右相更法求A与B最大公因数:...(1)列举法(这种方法一般用于较小的两个数或初学者):就是将这两个数的倍数都按次序列举,直到首次出现相同倍数为止,这个数就是最小公倍数.(2)分解质因数法:就是将两个数各自分解成质因数的形式,把公因数只乘...②两个数是互质关系的:如果两个数是互质数,那么这两个数的最大公因数就是1.例如:7和15的最大公因数是1.2、两个数最小公倍数的求法:(1)列举法(这种方法一般用于较小的两个数或初学者):就是将这两个数...最简便的有三种情况:1.互质关系:1是最大公倍数;两数积是最小公倍数2.倍数关系:小的那个数是最大公倍数;大的那个数是最小公倍数3.普通关系(即不是以上两种关系的):分解质因数,求最大公倍数;用大数翻倍法,就...则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。二、最小公倍数算法1、分解质因数法先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数...一、几种常见的求两个数的最小公倍数的方法。1、找倍数法(列举法)。方法1、找出两个数的倍数,再找出两个数的公倍数和最小公倍数例如:求6和8的最小公倍数。6的倍数有:6,12,18,24,30,36...求最大公因数和最小公倍数的方法:一、特殊情况:1、倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数.(如;6和12的最大公因数是6,最小公倍数是12.)2、互质关系的两个数,最大...60和42的最小公倍数=2*3*2*5*7=420。这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如23),把各自独有的质因数全部乘进去所得的积就是这两个数的最小公倍数。相同的质因数的乘积就是最大公因数...《》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式