怎么用定积分求求弧长?

 我来答
帐号已注销
2020-12-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

摆线x=a(t-sint),y=a(1-cost)的弧长

ds=√[(dx/dt)²+(dy/dt)²]dt

=a√[(1-cost)²+sin²t]dt

=a√[2(1-cost)]dt

=2asin(t/2)dt

故:S=[0,2π]2a∫zhisin(t/2)dt

=[0,2π]4a∫sin(t/2)d(t/2)

=-4a[cos(t/2)]︱[0,2π]

=-4a(-1-1)=8a

扩展资料:

在研究曲线时,我们总引进弧长作为参数,一方面是由于曲线的一般参数 t 不具有任何几何意义,另一方面,因为弧长是曲线的刚体运动不变量,用弧长作参数,可大大简化公式,并较容易导出其他不变量。

它的端点分别为A,B,在A,B之间任取n-1个点:P1,P2,…Pn-1。为方便计,把A写成P0,把B写成Pn。它们将Γ分成n段。设各点对应的参数依次为a=t0,t1,t2,…,tn-1,tn=b。

参考资料来源:百度百科-弧长

小张聊变美
高粉答主

2020-12-28 · 关注我不会让你失望
知道小有建树答主
回答量:2303
采纳率:100%
帮助的人:75.3万
展开全部

方法如下:

l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)

在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)

例:半径为1cm,45°的圆心角所对的弧长为

l=nπr/180

=45×π×1/180

=45×3.14×1/180

约等于0.785

扩展资料

圆锥的表面积=圆锥的侧面积+底面圆的面积

其中:圆锥体的侧面积=πRL

圆锥体的全面积=πRL+πR²

π为圆周率≈3.14

R为圆锥体底面圆的半径

L为圆锥的母线长 我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线

(注意:不是圆锥的高)是展开扇形的边长

n圆锥圆心角=r/l*360 360r/l

侧面展开图的圆心角求法:n=360r/R=πRr或2πr=nπr/180 n=360r/R 。如果题目中有切线,经常用的辅助线是连接圆心和切点的半径,得到直角,再用相关知识解题。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-12-28 · TA获得超过952个赞
知道答主
回答量:15
采纳率:0%
帮助的人:3521
展开全部

用定积分求弧长的方法如下:

x=a(t-sint),y=a(1-cost)的弧长:

ds=√[(dx/dt)²+(dy/dt)²]dt

=a√[(1-cost)²+sin²t]dt

=a√[2(1-cost)]dt

=2asin(t/2)dt

故:S=[0,2π]2a∫zhisin(t/2)dt

=[0,2π]4a∫sin(t/2)d(t/2)

=-4a[cos(t/2)]︱[0,2π]

=-4a(-1-1)=8a

扩展资料:

将函数[A,b]的图形在一个区间内分成n个部分,分成无数与y轴平行的矩形,当n→+∞时,将所有矩形的面积相加。

定积分和不定积分看起来并没有什么联系,但它们却有着内在的联系,因为这是一个在数学上很重要的理论。对一个图形进行无限细分似乎是不可能的,但由于这个理论,它可以转化为计算积分。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
2020-12-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

求摆线x=a(t-sint),y=a(1-cost)的弧长:

ds=√[(dx/dt)²+(dy/dt)²]dt

=a√[(1-cost)²+sin²t]dt

=a√[2(1-cost)]dt

=2asin(t/2)dt

故:S=[0,2π]2a∫sin(t/2)dt

=[0,2π]4a∫sin(t/2)d(t/2)

=-4a[cos(t/2)]︱[0,2π]

=-4a(-1-1)=8a

扩展资料:

把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友880de8d7d7
2020-01-15 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:706万
展开全部
怎么用定积分求求弧长?
(一).设曲线C的参数方程是:x=φ(t),y=ψ(t);那么有起点A(t₁)到终点B(t₂)的弧长S:
S=[t₁,t₂]∫√[(dx/dt)²+(dy/dt)²]dt
(二)若曲线C的方程为y=f(x),曲线弧的端点A和B对应的自变量x的值为a与b,那么A⌒B的弧长S:
S=[a,b]∫√[1+(dy/dx)²]dx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式