如何快速的学会简便计算?
3个回答
展开全部
简便运算实质就是对三大定律及基本性质的运用,三大定律就是我们熟知的交换律、结合律和分配率。对于培养小学高年级学生的计算能力、学生具有简便运算的意识,及审题习惯,学会正确利用数的特征的方法进行简算,并逐步提高这方面的能力,切实提高简算的水平,特别对提高学生计算的准确性、灵活性、创造性都有着举足轻重的作用,也是小学数学课堂教学的一个重要目标,怎样才能让小学中高年级的学生更准确的掌握呢?我认为主要有以下的几种类型可以使一些计算更简便。这几种类型无论对整数、小数还是分数的简算都适用。
一、 运用交换律使一些计算更简便
交换律文字表达式为:a + b = b + a或a ×b = b × a。在怎样的情况下我们运用交换律呢?由上式不难发现有两个或两个以上的数连加或连乘的情况下运用交换律。例如:0.7+3.9+4.3+6.1;25×36×4这类型的题中。那怎样进行交换呢?也就是说把谁和谁交换,这是解题的关键。先在这里介绍一种叫做“凑整”的数学思想,看那两个数放在一块恰好凑成整十整百或整千的数。那么怎样凑更简单呢?就是把一个数与另一个数的最后一位相加或相乘看恰好是否凑成整十整百或整千的数,就把这两个数交换放到一块,会达到事半功倍的的效果,会使一些计算更简便。
二、 运用结合率使一些计算更简便
结合律的文字表达式:(a + b)+ c = a +( b + c )或a × ( b × c) = ( a × b ) × c。由表达式不难发现结合律就是3个或3个以上的数相加或相乘时运用结合律使一些计算更简便。它和交换律的思想相似,那么“凑整”的数学思想对它同样适用,就是看相邻的那两个数的最后两个数字相加或相乘恰好是整十整百或整千的数,我们就把这两个数用括号括起来,然后再计算。
三、运用分配率使一些计算更简便
分配率就是乘法对加法的分配,文字表达式:a × ( b + c ) = a × b + a × c。通过表达式不难发现在分配的过程中要给括号里的两个数同时分配,这是解这类题的关键,也是大多数同学易出错的一个误区。这类题主要有两类,实质后一类也是前一类的还原或划归。
第一类,a × ( b + c ),有表达式不难发现a与b或a与c相乘再加比b与c先加再与a相乘更简便,在计算过程中要始终记清楚给两个数同时分配。
第二类,a × b + a × c。实质就是第一类a× ( b + c )的还原或倒过来写等式同样成立。通过表达式不难发现该类题型当中有一个共同的数a,在计算时可以把这个共同的数a提到括号的外边,括号里是另两个数的“和”或“差”根据题意来写。
四、 其它特殊类及基本性质的简算
第一、整数与整数相乘。
例如37×101,这类型的题我们做时看那个数更接近整十整百或整千等,根据题意把这个整十整百或整千的数写成整十整百或整千加多少(减多少),并把他们用括号括起来,再与另一个整数相乘更简便。
第二、整数和分数相乘。
例如:33×,整数与分数相乘计算时为了约分简便或便于约分,将整数写成分数的分母加上或减去一个数恰好和整数相等,再用括号括起来计算会更简便。
第三、减法性质。
文字表达式:a-b-c,这也是一类典型的简算题,简算时直接写成 a-( b + c ),反过来也成立,即a - ( b + c )= a – b - c也成立
第四、除法性质。
文字表达式:a÷b÷c,简算时直接写成a÷(b×c),反过来同样也成立,a÷(b×c) =a÷b÷c这也是一类非常典型的简算题。
五、观察题目特征,选择合适的简算方法
对于小学生而言,掌握某种具体的简算方法并不困难,经常出现的问题在于不能细心读题、审题,关键要准确抓住题目特征,继而选择合理的简算方法,因此,要培养学生细心观察、认真审题的习惯。要求学生做到:一看、二想、三做、四查。要求学生在读题时,一要看清内容:题里有哪几个数,它们之间存在哪几种运算关系;二要想一想,能不能简算?怎样简算?应用什么定律或运算性质进行简算?三做在明确目的方法后动笔细心计算;四查做好后认真检查,可以预防错误,还可以使简算方法更合理。
一、 运用交换律使一些计算更简便
交换律文字表达式为:a + b = b + a或a ×b = b × a。在怎样的情况下我们运用交换律呢?由上式不难发现有两个或两个以上的数连加或连乘的情况下运用交换律。例如:0.7+3.9+4.3+6.1;25×36×4这类型的题中。那怎样进行交换呢?也就是说把谁和谁交换,这是解题的关键。先在这里介绍一种叫做“凑整”的数学思想,看那两个数放在一块恰好凑成整十整百或整千的数。那么怎样凑更简单呢?就是把一个数与另一个数的最后一位相加或相乘看恰好是否凑成整十整百或整千的数,就把这两个数交换放到一块,会达到事半功倍的的效果,会使一些计算更简便。
二、 运用结合率使一些计算更简便
结合律的文字表达式:(a + b)+ c = a +( b + c )或a × ( b × c) = ( a × b ) × c。由表达式不难发现结合律就是3个或3个以上的数相加或相乘时运用结合律使一些计算更简便。它和交换律的思想相似,那么“凑整”的数学思想对它同样适用,就是看相邻的那两个数的最后两个数字相加或相乘恰好是整十整百或整千的数,我们就把这两个数用括号括起来,然后再计算。
三、运用分配率使一些计算更简便
分配率就是乘法对加法的分配,文字表达式:a × ( b + c ) = a × b + a × c。通过表达式不难发现在分配的过程中要给括号里的两个数同时分配,这是解这类题的关键,也是大多数同学易出错的一个误区。这类题主要有两类,实质后一类也是前一类的还原或划归。
第一类,a × ( b + c ),有表达式不难发现a与b或a与c相乘再加比b与c先加再与a相乘更简便,在计算过程中要始终记清楚给两个数同时分配。
第二类,a × b + a × c。实质就是第一类a× ( b + c )的还原或倒过来写等式同样成立。通过表达式不难发现该类题型当中有一个共同的数a,在计算时可以把这个共同的数a提到括号的外边,括号里是另两个数的“和”或“差”根据题意来写。
四、 其它特殊类及基本性质的简算
第一、整数与整数相乘。
例如37×101,这类型的题我们做时看那个数更接近整十整百或整千等,根据题意把这个整十整百或整千的数写成整十整百或整千加多少(减多少),并把他们用括号括起来,再与另一个整数相乘更简便。
第二、整数和分数相乘。
例如:33×,整数与分数相乘计算时为了约分简便或便于约分,将整数写成分数的分母加上或减去一个数恰好和整数相等,再用括号括起来计算会更简便。
第三、减法性质。
文字表达式:a-b-c,这也是一类典型的简算题,简算时直接写成 a-( b + c ),反过来也成立,即a - ( b + c )= a – b - c也成立
第四、除法性质。
文字表达式:a÷b÷c,简算时直接写成a÷(b×c),反过来同样也成立,a÷(b×c) =a÷b÷c这也是一类非常典型的简算题。
五、观察题目特征,选择合适的简算方法
对于小学生而言,掌握某种具体的简算方法并不困难,经常出现的问题在于不能细心读题、审题,关键要准确抓住题目特征,继而选择合理的简算方法,因此,要培养学生细心观察、认真审题的习惯。要求学生做到:一看、二想、三做、四查。要求学生在读题时,一要看清内容:题里有哪几个数,它们之间存在哪几种运算关系;二要想一想,能不能简算?怎样简算?应用什么定律或运算性质进行简算?三做在明确目的方法后动笔细心计算;四查做好后认真检查,可以预防错误,还可以使简算方法更合理。
展开全部
如何快速的学会简便计算?
解题思路:不能进行简便运算的按顺序计算,简便运算核心是运用加法和乘法各种定律进行计算,计算出整数部分方便后续计算的过程
解题思路:不能进行简便运算的按顺序计算,简便运算核心是运用加法和乘法各种定律进行计算,计算出整数部分方便后续计算的过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最佳答案,您先给孩子出几道简便计算,让他自己做,不会的空在那里,让他自己想多做几遍😂
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |