a+b+c=0,1/(a+1)+1/(b+1)+1/(c+1)=0 ,求(a+1)2+(b+2)2+(c+3)2
2个回答
2010-09-27 · 知道合伙人教育行家
关注
展开全部
将1/(a+1)+1/(b+1)+1/(c+1)=0 两边同乘以(a+1)(b+1)(c+1)得:
(b+1)(c+1)+(a+1)(c+1)+(a+1)(b+1)=0
ab+bc+ca+2(a+b+c)+3=0
又:a+b+c=0,所以:
ab+bc+ca=-3
(a+1)^2+(b+2)^2+(c+3)^2
=a^2+b^2+c^2+2(a+b+c)+3
=a^2+b^2+c^2+3
=(a+b+c)^2-2(ab+bc+ca)+3
=0-2*(-3)+3
=9
(b+1)(c+1)+(a+1)(c+1)+(a+1)(b+1)=0
ab+bc+ca+2(a+b+c)+3=0
又:a+b+c=0,所以:
ab+bc+ca=-3
(a+1)^2+(b+2)^2+(c+3)^2
=a^2+b^2+c^2+2(a+b+c)+3
=a^2+b^2+c^2+3
=(a+b+c)^2-2(ab+bc+ca)+3
=0-2*(-3)+3
=9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询