初中奥数:分数应用题及解析
展开全部
【 #初中奥数# 导语】奥数能够有效地培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力,提高学生揭示实际问题中隐含的数学概念及其关系的能力等等。使学生能够在创造性思维过程中,看到数学的实际作用,感受到数学的魅力,增强学生对数学美的感受力。以下是 无 为您整理的相关资料,希望对您有用。
例一:王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?
分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1+10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000×10%+16000=1600+16000=17600(元)
方法2:16000×(1+10%)=16000×1.1=17600(元)
答:王叔叔买这辆摩托车一共要花17600元钱。
例二:益民五金公司去年的营业总额为400万元。如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?
分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。缴纳营业税占营业额的
3%,即400万元的3%。求一个数的百分之几是多少,也用乘法计算。计算时可将百分数化成分数或小数来计算。
400×3%=12(万元)
或400×3%=400×0.03=12(万元)
答:去年应缴纳营业税12万元。
点评:在现实社会中,各种税率是不一样的。应纳税额的计算从根本上讲是求一个数的百分之几是多少。
例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%
答:“十一”黄金周期间应缴纳营业税13.5万元。
分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
例一:王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?
分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1+10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000×10%+16000=1600+16000=17600(元)
方法2:16000×(1+10%)=16000×1.1=17600(元)
答:王叔叔买这辆摩托车一共要花17600元钱。
例二:益民五金公司去年的营业总额为400万元。如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?
分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。缴纳营业税占营业额的
3%,即400万元的3%。求一个数的百分之几是多少,也用乘法计算。计算时可将百分数化成分数或小数来计算。
400×3%=12(万元)
或400×3%=400×0.03=12(万元)
答:去年应缴纳营业税12万元。
点评:在现实社会中,各种税率是不一样的。应纳税额的计算从根本上讲是求一个数的百分之几是多少。
例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%
答:“十一”黄金周期间应缴纳营业税13.5万元。
分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询