求定积分∫ √3 1 dx/x^2√(1+x^2) 答案是√2-(2√3)/3

 我来答
巢理青康震
2020-07-10 · TA获得超过1064个赞
知道答主
回答量:7
采纳率:0%
帮助的人:450
展开全部
令x=tanu,则:sinu=tanu/√[1+(tanu)^2]=x/√(1+x^2),dx=[1/(cosu)^2]du.%D%A∴∫{1/[x^2√(1+x^2)]}dx%D%A=∫{1/[(tanu)^2/cosu]}[1/(cosu)^2]du%D%A=∫{1/[(tanu)^2cosu]}du%D%A=∫[cosu/(sinu)^2]du%D%A=∫[1/(sinu)^2]d(sinu)%D%A=-1/sinu+C%D%A=-√(1+x^2)/x+C.%D%A%D%A∴∫(上限为√3,下限1){1/[x^2√(1+x^2)]}dx%D%A=-√(1+x^2)/x|(上限为√3,下限1)%D%A=-√(1+3)/√3+√(1+1)%D%A=√2-2√3/3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式