1/1×2×3+1/2×3×4+1/3×4×5+1/4×5×6+.+1/48×49×50的计算过程
1个回答
展开全部
1/1×2×3+1/2×3×4+1/3×4×5+1/4×5×6+.+1/48×49×50
=(1/2)*(1/1×2-1/2×3)+(1/2)*(1/2×3-1/3×4)+.(1/2)*(1/48×49-1/49×50)
=(1/2)*(1/1×2-1/2×3+1/2×3-1/3×4+1/3×4.+1/48×49-1/49×50)
=(1/2)*(1/1×2-1/49×50)
=(1/2)*(1224/2450)
=612/2450
=306/1225
=(1/2)*(1/1×2-1/2×3)+(1/2)*(1/2×3-1/3×4)+.(1/2)*(1/48×49-1/49×50)
=(1/2)*(1/1×2-1/2×3+1/2×3-1/3×4+1/3×4.+1/48×49-1/49×50)
=(1/2)*(1/1×2-1/49×50)
=(1/2)*(1224/2450)
=612/2450
=306/1225
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |