设函数f(X)的原函数为SinX/X,则不定积分∫X[f'(X)]dX=

 我来答
博学小赵爱生活
高能答主

2020-07-25 · 专注于食品生活科技行业
博学小赵爱生活
采纳数:456 获赞数:111877

向TA提问 私信TA
展开全部

记F(x)=sinx/x由于lim(x--0) sinx/x =1,F在R上有定义,取F(0)=1下证F在0处可导,用洛必达法则泰勒公式可得:

lim(x--0) (F(x)-F(0))/(x-0) =lim(x--0) (sinx/x-1)/x = lim(x--0) (sinx-x)/x^2=lim(x--0) (cosx-1)/2x =lim(x--0) (-sinx/2) =0

即F'(0)=0=f(0)当x不为0时,f(x)=F'(x)=cosx/x-sinx/x^2又 再用洛必达法则有lim(x--0) f(x) =lim(x--0) (xcosx-sinx)/x^2 =lim(x--0) (-xsinx)/2x =0

因此f可以记作 f(x)=cosx/x-sinx/x^2 x在R上取值以上lim(x--0)表示x趋于0时的极限由分部积分法,注意到f'(2x)的一个原函数为f(2x)/2,

有/ xf'(2x)dx=xf(2x)/2- / (f(2x)/2)dx=xf(2x)/2- / (f(2x)/4)d(2x)=xf(2x)/2- F(2x)/4 +c=cos2x/4-sin2x/8x-sin2x/8x +c=cos2x/4-sin2x/4x +c,其中c为任意常数以上 /...dx表示求原函数。

扩展资料:

求不定积分的技巧方法:

分部积分法釆用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成谨余正不定积分。具体选取A、v时,通常基于以下两点考虑:

(祥悔1)降低多项式部分的系数。

(2)简化被积函数的类型毁握。

用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。

茹翊神谕者

2023-07-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1597万
展开全部

简单肆陆分析裂陵顷一下,答案如图所汪启示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
y妹子是我
高粉答主

2020-07-24 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:327
采纳率:100%
帮助的人:4.8万
展开全部

不定积分∫X[f'(X)]dX=(xcosx-2sinx)/x+C。

解答过程如行谨下:

f(x)的一个原函数为sinx/x

所以f(x)=(sinx/x)'=(xcosx-sinx)/x²

∫f(x)dx=sinx/x+C

所以∫xf'(x)dx

=∫xdf(x)

=xf(x)-∫f(x)dx

=x[(xcosx-sinx)/x²]-(sinx/x+C)

=(xcosx-sinx)/x-sinx/x+C

=(xcosx-2sinx)/x+C

扩展资料

常用积则李分公档盯基式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式