设A为正交矩阵,且|A|=-1,证明-1是A的特征值 关于这个问题,能解释清楚一点么?

 我来答
励韵嵇欣美
2020-09-15 · TA获得超过1179个赞
知道答主
回答量:1686
采纳率:100%
帮助的人:7.7万
展开全部
A是正交矩阵
那么A*A‘=E
|-E-A|=|E+A|=|A*A'+A*E|=|A*(A'+E)|=|A|*|A'+E|=-|A'+E|
而|E+A|=|E'+A|是很容易证的
所以|E+A|=0 即-1是A的特征值
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式