定义在闭区间上的函数一定有界吗?

 我来答
五百学长
高能答主

2021-10-11 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:3972
采纳率:100%
帮助的人:64.5万
展开全部

函数在闭区间上连续,函数的极限存在,函数在x0的某一邻域内有界(函数极限的局部有界性)。


证明:

反证法:

设函数f(x)在闭区间[a,b]连续,函数在[a,b]无界,将[a,b]划分为[a,a+b/2][a+b/2,b],设函数在[a,a+b/2]无界(函数不可能在两个闭区间有界),设a=a1,a+b/2=b1。

将[a1,b1]划分为[a1,a1+b1/2][a1+b1/2,b1],设函数在[a1,a1+b1/2]无界,设a1=a2,

a1+b1/2=b2......

得到{[an,bn]}

f(x)在 {[an,bn]} 无界,∃ ξ ∈[an,bn],且lim(n->∞)an=lim(n->∞)bn= ξ 

由于ξ ∈[an,bn],即ξ ∈[a,b],f(x)在ξ的某一邻域内极限存在,即∃常数M>0和δ >0,使得当x∈U( ξ,δ)∩[a,b]成立时,有|f(x)|≤M (函数极限的局部有界性)。

当n充分大时,[an,bn]∈U( ξ,δ)∩[a,b],与假设矛盾。

所以函数f(x)在[a,b]连续,f(x)在[a,b]有界。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
htgxgwj

2021-12-01 · TA获得超过736个赞
知道小有建树答主
回答量:9262
采纳率:75%
帮助的人:369万
展开全部
定义在闭区间上的连续函数一定有界,如果不是连续函数不一定有界。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式