定义在闭区间上的函数一定有界吗?
2个回答
展开全部
函数在闭区间上连续,函数的极限存在,函数在x0的某一邻域内有界(函数极限的局部有界性)。
证明:
反证法:
设函数f(x)在闭区间[a,b]连续,函数在[a,b]无界,将[a,b]划分为[a,a+b/2][a+b/2,b],设函数在[a,a+b/2]无界(函数不可能在两个闭区间有界),设a=a1,a+b/2=b1。
将[a1,b1]划分为[a1,a1+b1/2][a1+b1/2,b1],设函数在[a1,a1+b1/2]无界,设a1=a2,
a1+b1/2=b2......
得到{[an,bn]}
f(x)在 {[an,bn]} 无界,∃ ξ ∈[an,bn],且lim(n->∞)an=lim(n->∞)bn= ξ
由于ξ ∈[an,bn],即ξ ∈[a,b],f(x)在ξ的某一邻域内极限存在,即∃常数M>0和δ >0,使得当x∈U( ξ,δ)∩[a,b]成立时,有|f(x)|≤M (函数极限的局部有界性)。
当n充分大时,[an,bn]∈U( ξ,δ)∩[a,b],与假设矛盾。
所以函数f(x)在[a,b]连续,f(x)在[a,b]有界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询