函数有界是可积的什么条件

 我来答
科技点灯人
2023-01-30 · TA获得超过292个赞
知道小有建树答主
回答量:126
采纳率:83%
帮助的人:57.9万
展开全部

可积函数一定是有界的,可积是有界的充要条件,有界是可积的必要不充分条件。比如狄利克雷函数就是一个很典型的函数,它处处不连续,处处极限不存在,是一个处处不连续的可测函数。

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。

设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。

可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为黎曼可积等。

给定集合X及其上的σ-代数σ和σ上的一个测度,实值函数f:X→R是可积的如果正部f和负部f都是可测函数并且其勒贝格积分有限。令为f的"正部"和"负部"。如果f可积,则其积分定义为对于实数p≥0,函数f是p-可积的如果|f|是可积的;对于p=1,也称绝对可积。

茹翊神谕者

2023-08-21 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25161

向TA提问 私信TA
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式