secx的不定积分推导过程是怎么样的?
∫secx=ln|secx+tanx|+C。C为常数。
左边=∫dx/cosx=∫cosxdx/(cosx)^2
=∫d(sinx)/[1-(sinx)^2]
令t=sinx
=∫dt/(1-t^2)
=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)
=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)
=(1/2)ln|1+t|-(1/2)ln|1-t|+C
=(1/2)ln|(1+t)/(1-t)|+C
=(1/2)ln|(1+sinx)/(1-sinx)|+C
=(1/2)ln|(1+sinx)^2/(cosx)^2|+C
=ln|(1+sinx)/cosx|+C
=ln|1/cosx+sinx/cosx|+C
=ln(secx+tanx|+C=右边
积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
2024-06-06 广告
∫secx=ln|secx+tanx|+C。C为常数。
左边=∫dx/cosx=∫cosxdx/(cosx)^2
=∫d(sinx)/[1-(sinx)^2]
令t=sinx
=∫dt/(1-t^2)
=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)
=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)
=(1/2)ln|1+t|-(1/2)ln|1-t|+C
=(1/2)ln|(1+t)/(1-t)|+C
=(1/2)ln|(1+sinx)/(1-sinx)|+C
=(1/2)ln|(1+sinx)^2/(cosx)^2|+C
=ln|(1+sinx)/cosx|+C
=ln|1/cosx+sinx/cosx|+C
=ln(secx+tanx|+C=右边
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。