2个回答
展开全部
L : x²+y² = 1,y = √(1-x^2), y' = -x/√(1-x^2)
ds = √(1+y'^2)dx = dx/√(1-x^2)
∫<L> arctan[e^(x²+y²)]ds = ∫<-1, 1> arctan(e^1)dx/√(1-x^2)
= ∫<-1, 1> arctan(e^1)dx/√(1-x^2)
= 2arctane∫<0, 1> dx/√(1-x^2) 令 x = sint
= 2arctane∫<0, π/2> costdt/cost = πarctane
ds = √(1+y'^2)dx = dx/√(1-x^2)
∫<L> arctan[e^(x²+y²)]ds = ∫<-1, 1> arctan(e^1)dx/√(1-x^2)
= ∫<-1, 1> arctan(e^1)dx/√(1-x^2)
= 2arctane∫<0, 1> dx/√(1-x^2) 令 x = sint
= 2arctane∫<0, π/2> costdt/cost = πarctane
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |