如何理解数列收敛的柯西准则?

 我来答
生活达人小罗
高能答主

2023-04-20 · 生活中的问题,我来为您解答。
生活达人小罗
采纳数:985 获赞数:394679

向TA提问 私信TA
展开全部

在大于某个特定的项数n之后,任选两个项的绝对值总会小于一个数(该数值不确定,但恒大于零),则这个数列就是基本数列(收敛数列)。“柯西准则”又称“柯西收敛原理”,是一个数列极限存在的充要条件。

条件:对于任意小数ε>0,存在自然数N,当n>N且n'>N时,有|xn-xn'|<ε;

结论:数列{xn}有极限x,即对于任意小数ε'>0,存在自然数N',当n>N'时,有|xn-x|<ε'。

柯西极限存在准则应用

柯西极限存在准则是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:

(1)数列。

(2)数项级数。

(3)函数。

(4)反常积分。

(5)函数列和函数项级数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式