初二数学题 在线等

如图,已知在△ABC内,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线。求证:BQ+AQ=AB+BP... 如图,已知在△ABC内,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线。
求证:BQ+AQ=AB+BP
展开
林皖的供应链知识库
2010-09-27 · TA获得超过4827个赞
知道小有建树答主
回答量:423
采纳率:0%
帮助的人:408万
展开全部
在三角形ABC内角BAC=60°角ACB=40°P.Q分别在BC.CA上 AP.BQ分别为角BAC、角ABC的平分线 。求BQ+AQ=AB+BP

证明:
做辅助线PM‖BQ,与QC相交与M。
(首先算清各角的度数)
∵∠APB=180°—∠BAP—∠ABP=180°—30°—80°=70°
且∠APM=180°—∠APB—∠MPC=180°—70°—∠QBC(同位角相等)=180°—70°—40°=70°
∴∠APB=∠APM
又∵AP是BAC的角平分线,
∴∠BAP=∠MAP
AP是公共边
∴△ABP≌△AMP(角边角)
∴AB=AM,BP=MP
在△MPC中,∠MCP=∠MPC=40°
∴MP=MC
∴AB+BP=AM+MP=AM+MC=AC
在△QBC中
∵∠QBC=QCB=40°
∴BQ=QC
∴BQ+AQ=AQ+QC=AC
∴BQ+AQ=AB+BP
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式