5个回答
展开全部
14题、利用泰勒公式做无穷小等价交换,进而得出极限。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(14)
x->0
tanx = x+(1/3)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
tanx -sinx =(1/2)x^3+o(x^3)
lim(x->0) (tanx-sinx)/[x(arcsinx)^2]
=lim(x->0) (tanx-sinx)/x^3
=lim(x->0) (1/2)x^3/x^3
=1/2
(15)
x->0
分子
cos2x= 1 -(1/2)(2x)^2 +o(x^2) = 1- 2x^2 +o(x^2)
cos2x -1+x^3 =-2x^2 +o(x^2)
分母
2^(5x) = 1+ (ln2)(5x) +o(x)
2^(5x) -1 = (5ln2)x +o(x)
tanx = x+o(x)
( 2^(5x) -1).tanx =(5ln2)x^2 +o(x^2)
lim(x->0) ( cos2x -1+x^3)/[( 2^(5x) -1).tanx ]
=lim(x->0) -2x^2/[(5ln2)x^2 ]
=-2/(5ln2)
x->0
tanx = x+(1/3)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
tanx -sinx =(1/2)x^3+o(x^3)
lim(x->0) (tanx-sinx)/[x(arcsinx)^2]
=lim(x->0) (tanx-sinx)/x^3
=lim(x->0) (1/2)x^3/x^3
=1/2
(15)
x->0
分子
cos2x= 1 -(1/2)(2x)^2 +o(x^2) = 1- 2x^2 +o(x^2)
cos2x -1+x^3 =-2x^2 +o(x^2)
分母
2^(5x) = 1+ (ln2)(5x) +o(x)
2^(5x) -1 = (5ln2)x +o(x)
tanx = x+o(x)
( 2^(5x) -1).tanx =(5ln2)x^2 +o(x^2)
lim(x->0) ( cos2x -1+x^3)/[( 2^(5x) -1).tanx ]
=lim(x->0) -2x^2/[(5ln2)x^2 ]
=-2/(5ln2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询