设A是m*n矩阵,证明齐次线性方程组Ax=0与ATAx=0同解.
户如乐9318
2022-07-04
·
TA获得超过6661个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
关注
证明:
若AX1=0, 则 A^TAX1 = 0
即 AX=0 的解都是 A^TAX=0 的解
若 A^TAX2 = 0
则 X2^T A^TAX2 = 0
所以 (AX2)^T(AX2) = 0
所以 AX2 = 0 -- 这里要求A是实矩阵
-- 提示: AX2 是一个
列向量 所以 A^TAX=0 的解也是 AX=0 的解
所以 齐次线性方程组Ax=0与A^TAx=0同解
收起
为你推荐: