
等差数列an=5n-4,求{1/an.an+1}的前n项和.
展开全部
∵1/(an·an+1)=1/[(5n-4)(5n+1)]=(1/5)[1/(5n-4)-1/(5n+1)],
∴1/(a1·a2)+1/(a2·a3)+1/(a3·a4)+······+1/(an·an+1)
=1/(1×6)+1/(6×11)+1/(11×16)+······+1/[(5n-4)(5n+1)]
=(1/5)[1-1/6+1/6-1/11+1/11-1/16+······+1/(5n-4)-1/(5n+1)]
=(1/5)[1-1/(5n+1)]
=n/(5n+1).
∴1/(a1·a2)+1/(a2·a3)+1/(a3·a4)+······+1/(an·an+1)
=1/(1×6)+1/(6×11)+1/(11×16)+······+1/[(5n-4)(5n+1)]
=(1/5)[1-1/6+1/6-1/11+1/11-1/16+······+1/(5n-4)-1/(5n+1)]
=(1/5)[1-1/(5n+1)]
=n/(5n+1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询