等差数列{an},{bn}的前n项和分别为Sn和Tn,若Sn/Tn=(7n+2)/(n+3),求a6/b6
1个回答
展开全部
Sn/Tn=(7n+2)/(n+3)
S(2n-1)/T(2n-1)=[7(2n-1)+2]/(2n-1+3)
S(2n-1)/T(2n-1)=(14n-5)/(2n+2)
{[a1+a(2n-1)]*(2n-1)/2}/{[b1+b(2n-1)]*(2n-1)/2}=(14n-5)/(2n+2)
[a1+a(2n-1)]/[b1+b(2n-1)]=(14n-5)/(2n+2)
2an/(2bn)=(14n-5)/(2n+2)
an/bn=(14n-5)/(2n+2)
a6/b6=(14*6-5)/(2*6+2)
a6/b6=79/14
S(2n-1)/T(2n-1)=[7(2n-1)+2]/(2n-1+3)
S(2n-1)/T(2n-1)=(14n-5)/(2n+2)
{[a1+a(2n-1)]*(2n-1)/2}/{[b1+b(2n-1)]*(2n-1)/2}=(14n-5)/(2n+2)
[a1+a(2n-1)]/[b1+b(2n-1)]=(14n-5)/(2n+2)
2an/(2bn)=(14n-5)/(2n+2)
an/bn=(14n-5)/(2n+2)
a6/b6=(14*6-5)/(2*6+2)
a6/b6=79/14
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询