偶函数关于什么对称?
- 01
y轴
偶函数是关于y轴对称。主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数;f(-x)=f(x)的是偶函数。
一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数(Even Function)。偶函数的定义域必须关于y轴对称,否则不能称为偶函数。一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。一个偶函数与一个奇函数相乘所得的积为奇函数。两个偶函数相加所得的和为偶函数。
最早的奇偶函数的定义
1727年,年轻的瑞士数学家欧拉在提交给圣彼得堡科学院的旨在解决“反弹道问题”的一篇论文(原文为拉丁文)中,首次提出了奇、偶函数的概念。若用-x代替x,函数保持不变,则称这样的函数为偶函数(拉丁文functionespares)。欧拉列举了三类偶函数和三类奇函数,并讨论了奇偶函数的性质。
代数判断法
主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数; f(-x)=f(x)的是偶函数。
几何判断法
关于原点对称的函数是奇函数,关于Y轴对称的函数是偶函数。
如果f(x)为偶函数,则f(x+a)=f[-(x+a)]
但如果f(x+a)是偶函数,则f(x+a)=f(-x+a)
2024-08-07 广告