lim x趋向0[e^(x^2)-e^(2-2cosx)]/x^4 答案是1/12
1个回答
展开全部
lim(x→0) [e^(x^2)-e^(2-2cosx)]/x^4
=lim(x→0) [e^(x^2)-e^2/e^(2cosx)]/x^4
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^(2cosx)*x^4]
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^2*x^4]
=lim(x→0) [e^(x^2+2cosx)-e^2]/[e^2*x^4] (0/0)
=lim(x→0) [e^(x^2+2cosx)*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) [e^2*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) (x-sinx)/[2x^3] (0/0)
=lim(x→0) (1-cosx)/(6x^2)
=lim(x→0) (x^2/2)/(6x^2)
=1/12
=lim(x→0) [e^(x^2)-e^2/e^(2cosx)]/x^4
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^(2cosx)*x^4]
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^2*x^4]
=lim(x→0) [e^(x^2+2cosx)-e^2]/[e^2*x^4] (0/0)
=lim(x→0) [e^(x^2+2cosx)*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) [e^2*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) (x-sinx)/[2x^3] (0/0)
=lim(x→0) (1-cosx)/(6x^2)
=lim(x→0) (x^2/2)/(6x^2)
=1/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询