limx趋向于无穷(cos1/x)^(x)的极限
1个回答
展开全部
应该是
lim(x→0)[cos(1/x)]^x,
先计算
lim(x→0)x*ln[cos(1/x)]
= lim(t→inf.)(1/t)*ln(cost) (令 t=1/x)
= lim(t→inf.)(1/t)*(cost-1) (等价无穷小替换)
= ……
= 0,
因此
lim(x→0)[cos(1/x)]^x
= e^lim(x→0)x*ln[cos(1/x)]
= e^0
= 1.
lim(x→0)[cos(1/x)]^x,
先计算
lim(x→0)x*ln[cos(1/x)]
= lim(t→inf.)(1/t)*ln(cost) (令 t=1/x)
= lim(t→inf.)(1/t)*(cost-1) (等价无穷小替换)
= ……
= 0,
因此
lim(x→0)[cos(1/x)]^x
= e^lim(x→0)x*ln[cos(1/x)]
= e^0
= 1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询