圆上两点之间的部分叫做什么
圆弧,简称弧。弧用符号“⌒”表示。例如,以A、B为端点的圆弧读做弧AB或圆弧AB。圆的任意一条直径的两个端点把圆分成两条弧,半圆也是弧。大于半圆的弧叫优弧,小于半圆的弧叫劣弧。连接AB两点的直线是⌒AB的弦长。
弧长角度公式
扇形弧长L=圆心角(弧度制)×R=nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπR²/360=LR/2(L为扇形的弧长)
圆锥底面半径r=nR/360(r为底面半径)(n为圆心角)
扇形面积公式
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
(L为弧长,R为扇形半径)
推导过程:S=πr²×L/2πr=LR/2
(L=│α│·R)
有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。