椭圆的标准方程推导过程
展开全部
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x²/a²+y²/b²=1,(ab0)。
当焦点在y轴时,椭圆的标准方程是:y²/a²+x²/b²=1,(ab0)。
其中a²-c²=b²,推导:PF1+PF2F1F2(P为椭圆上的点F为焦点)。
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
相关信息:
1、如果在一个平面内一个动点到两个定点的距离的和等于定长,那么这个动点的轨迹叫做椭圆。
2、椭圆的图像如果在直角坐标系中表示,那么上述定义中两个定点被定义在了x轴。若将两个定点改在y轴,可以用相同方法求出另一个椭圆的标准方程。
3、在方程中,所设的称为长轴长,称为短轴长,而所设的定点称为焦点,那么称为焦距。在假设的过程中,假设了,如果不这样假设,会发现得不到椭圆。当时,这个动点的轨迹是一个线段;当时,根本得不到实际存在的轨迹,而这时,其轨迹称为虚椭圆。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询