行列式展开定理是什么?

 我来答
霓脦那些
高能答主

2021-12-11 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:74
采纳率:100%
帮助的人:2.4万
展开全部

将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。

拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。

公式

设B= (bij)是一个n×n矩阵。B关于第i行第j列的余子式Mij是指B中去掉第i行第j列后得到的n1阶子矩阵的行列式。有时可以简称为B的(i,j)余子式。

B的(i,j)代数余子式:Cij是指B的(i,j)余子式Mij与(1)i+j的乘积:Cij= (1)i+jMij。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式