行列式展开定理是什么?
1个回答
展开全部
将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。
行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。
拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。
公式
设B= (bij)是一个n×n矩阵。B关于第i行第j列的余子式Mij是指B中去掉第i行第j列后得到的n1阶子矩阵的行列式。有时可以简称为B的(i,j)余子式。
B的(i,j)代数余子式:Cij是指B的(i,j)余子式Mij与(1)i+j的乘积:Cij= (1)i+jMij。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询