若n阶矩阵A与B相似,证明它们的特征矩阵相似 线代
展开全部
题:若n阶矩阵A与B相似,证明它们的特征矩阵相似
以下用E表示单位矩阵(幺阵),用E/X表示矩阵X的逆阵.
题意即:
若存在可逆矩阵P,使得 E/P*A*P=B,
则存在可逆矩阵Q,使得 E/Q*(λE-A)*Q= (λE-B)
证:取Q为P即是.好证极了.略.
还是写一下吧.
证:E/P*A*P=B,
故 E/P*(λE-A)*P= E/PλEP-E/P*A*P=E/PλP-B=E/P*P*λE-B=λE-B
故λE-A 与λE-B 相似.
以下用E表示单位矩阵(幺阵),用E/X表示矩阵X的逆阵.
题意即:
若存在可逆矩阵P,使得 E/P*A*P=B,
则存在可逆矩阵Q,使得 E/Q*(λE-A)*Q= (λE-B)
证:取Q为P即是.好证极了.略.
还是写一下吧.
证:E/P*A*P=B,
故 E/P*(λE-A)*P= E/PλEP-E/P*A*P=E/PλP-B=E/P*P*λE-B=λE-B
故λE-A 与λE-B 相似.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询