(1+1/n)^n的极限是什么?

 我来答
生活小达人164I
高能答主

2022-01-11 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:34.3万
展开全部

(1+1/n)^n的极限如:设f(n)=(1+1/n)^n;两边取自然对数ln[(1+1/n)^n]=n*ln(1+1/n);对n*ln(1+1/n)用罗比达法则;得lim(n*ln(1+1/n))=1 (n-∞);所以lim(1+1/n)^n=e,(n-∞)。

性质:

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列'牧敛'(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列:“1,-1,1,-1,......(-1)n+1"。

3、保号性:若lim xn=a>0(或<0),则对任何m E (0,a)(a<0时则是m ∈(a,0)〉,存在N>0,使n>N时有x, >m(相应的xn<m) 。

4、保不等式性:设数列{xn}与{yn}均收敛。若存在正数N,使得当n>N时有X≥yn,则 Lmm2n-m""(若条件换为xn>yn,结论不变)。

5、和实数运算的相容性:譬如如果两个数列(xn} ,{yn}都收敛,那么数列(x+ yn]也收敛,而且它的极限等于{xn}的极限和{yn}的极限的和。

6、与子列的关系∶数列{xn}与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限﹔数列(x,}收敛的充要条件是:数列{xn}的任何非平凡子列都收敛。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式