有界函数一定收敛吗?
1个回答
展开全部
有界函数不一定收敛。
收敛函数一定有界但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。如x趋于无穷时有界函数sinx不收敛。单调有界函数一定收敛。
性质
函数的有界性与其他函数性质之间的关系函数的性质:有界性,单调性,周期性,连续性,可积性。单调性闭区间上的单调函数必有界。其逆命题不成立;连续性闭区间上的连续函数必有界。其逆命题不成立;可积性闭区间上的可积函数必有界。其逆命题不成立。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。
一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ(x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |