导函数的基本公式是什么?

 我来答
社无小事
高能答主

2022-01-14 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20392

向TA提问 私信TA
展开全部

导函数的基本公式如图所示:

求导法则:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

世界探秘者005
2023-07-21 · TA获得超过1202个赞
知道小有建树答主
回答量:1008
采纳率:95%
帮助的人:118万
展开全部

导函数的基本公式是求导的定义:

给定函数 y = f(x),其导函数(即导数)表示为 f'(x) 或 dy/dx。

导函数的基本公式包括以下几个常见的规则:

1. 常数规则:

若 c 是一个常数,则导数为 0。即,d/dx(c) = 0。

2. 幂规则:

若 f(x) = x^n,其中 n 是实数常数,则导数为 f'(x) = nx^(n-1)。

3. 和差规则:

若 f(x) 和 g(x) 是可导函数,则导数的和差规则为:

(f(x) ± g(x))' = f'(x) ± g'(x)。

4. 乘积规则:

若 f(x) 和 g(x) 是可导函数,则导数的乘积规则为:

(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。

5. 商规则:

若 f(x) 和 g(x) 是可导函数,并且 g(x) ≠ 0,则导数的商规则为:

(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2。

6. 链式法则:

若 y = f(g(x)),其中 f(u) 和 g(x) 都是可导函数,则链式法则为:

dy/dx = f'(g(x)) * g'(x)。

这些是导函数的基本公式,可以根据具体函数的形式和规则使用这些公式进行求导。


                                   

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式