sinx^4的不定积分是什么?
1个回答
展开全部
具体回答如下:
∫( sinx^4)dx
= ∫(sinx^2)^2dx
=∫ ((1 - cos2x)/2)^2dx
=∫ (1 - 2cos2x + (cos2x)^2)/4dx
= ∫【0.25 - 0.5cos2x + 0.125(1 + cos4x)】dx
= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx
= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx
= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)
= (sin4x)/32 - (sin2x)/4 + (3x/8) + C
不定积分的意义:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询