二阶导小于0是凹还是凸?
1个回答
展开全部
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么:
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的。
(2)若在(a,b)内f''(x)<0,则斗改f(x)在[a,b]上的图形是凸的。
凸函数的性质:
定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭慎锋区间,那宽销晌么f有可能在C的端点不连续。
一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减,一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y)>f(x)+f '(x)(y−x)。特别地,如果f '(c)= 0,那么c是f(x)的最小值。
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询