正交矩阵行列式的值是什么?

 我来答
海绵宝宝的休闲娱乐
高能答主

2022-01-21 · 致力于成为全知道最会答题的人
知道答主
回答量:1342
采纳率:20%
帮助的人:19.6万
展开全部

正交矩阵行列式的值是若A是正交阵,则AA^T=E两边取行列式得|A||A^T|=1,即|A|^2=1,所以|A|=±1。

|A|=|A^T|是行列式的性质,行列式的行列互换,行列式的值不变。

r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1。

r1i*2j+r2i*r2j+r3i*r3j=0,i,j=1,2,3,i不=j。

相关定理:

定理1 设A为一n×n矩阵,则det(AT)=det(A)。

证 对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的。

对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开,我们有:det(A)=a11det(M11)-a12det(M12)+-…±a1,k+1det(M1,k+1),此式右端恰是det(AT)按照AT的第一列的余子式展开。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式