1到100内的质数有那些
6个回答
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
1到100的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数,1到100的质数有25个。
质数的个数是无穷的。
欧几里得的《几何原本》中有一个经典的证明。
它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,??,pn,设N=p1×p2×??×pn,那么,N+1是素数或者不是素数。
质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数,1到100的质数有25个。
质数的个数是无穷的。
欧几里得的《几何原本》中有一个经典的证明。
它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,??,pn,设N=p1×p2×??×pn,那么,N+1是素数或者不是素数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
100以内的质数共有25个,这些质数我们经常用到,可以用下面的两种办法记住它们。
一、规律记忆法
首先记住2和3,而2和3两个质数的乘积为6。100以内的质数,一般都在6的倍数前、后的位置上。如5、7、11、13、19、23、29、31、37、41、43……只有25、35、49、55、65、77、85、91、95这几个6的倍数前后位置上的数不是质数,而这几个数都是5或7的倍数。由此可知:100以内6的倍数前、后位置上的两个数,只要不是5或7的倍数,就一定是质数。根据这个特点可以记住100以内的质数。
二、分类记忆法
我们可以把100以内的质数分为五类记忆。
第一类:20以内的质数,共8个:2、3、5、7、11、13、17、19。
第二类:个位数字是3或9,十位数字相差3的质数,共6个:23、29、53、59、83、89。
第三类:个位数字是1或7,十位数字相差3的质数,共4个:31、37、61、67。
第四类:个位数字是1、3或7,十位数字相差3的质数,共5个:41、43、47、71、73。
第五类:还有2个持数是79和97。素数就是质数了,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,51,53,59,61,67,71,73,79,83,89,97
一、规律记忆法
首先记住2和3,而2和3两个质数的乘积为6。100以内的质数,一般都在6的倍数前、后的位置上。如5、7、11、13、19、23、29、31、37、41、43……只有25、35、49、55、65、77、85、91、95这几个6的倍数前后位置上的数不是质数,而这几个数都是5或7的倍数。由此可知:100以内6的倍数前、后位置上的两个数,只要不是5或7的倍数,就一定是质数。根据这个特点可以记住100以内的质数。
二、分类记忆法
我们可以把100以内的质数分为五类记忆。
第一类:20以内的质数,共8个:2、3、5、7、11、13、17、19。
第二类:个位数字是3或9,十位数字相差3的质数,共6个:23、29、53、59、83、89。
第三类:个位数字是1或7,十位数字相差3的质数,共4个:31、37、61、67。
第四类:个位数字是1、3或7,十位数字相差3的质数,共5个:41、43、47、71、73。
第五类:还有2个持数是79和97。素数就是质数了,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,51,53,59,61,67,71,73,79,83,89,97
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1到100内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
拓展:质数是指在大于1的自然数中,一个数只有1和它本身两个因数,这样的数叫作质数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
从最小的质数2开始,依次往后有3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询