求曲线ρ=2acosθ所围成图形的面积 用定积分
1个回答
展开全部
cosθ=ρ/2a>=0
所以θ范围是(-π/2,π/2)
S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ
积分范围是(-π/2,π/2)
故S=a^2(π/2+π/2)=πa^2
所以θ范围是(-π/2,π/2)
S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ
积分范围是(-π/2,π/2)
故S=a^2(π/2+π/2)=πa^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
求曲线ρ=2acosθ所围成图形的面积cosθ=ρ/2a>=0所以θ范围是(-π/2,π/2)S=∫1/2*ρ^2dθ=∫2a^2cosθdθ=a^2∫(1+cos2θ)dθ=a^2+1/2a^2sin2θ积分范围是(-π/2,π/2...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |