求∫√x/1+x√xdx在上下限1到4的定积分.
1个回答
展开全部
令u = 1 + x√x = 1 + x^(3/2)du = (3/2)√x dxx = 1 --> u = 2x = 4 --> u = 9∫(1,4) √x/(1 + x√x) dx= ∫(2,9) √x/u * (2/3)(1/√x) du= (2/3)∫(2,9) du/u= (2/3)ln| u | (2,9)= (2/3)[ln(9) - ln(2)]= (2/3)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
厦门君韦信息技术
2024-11-18 广告
2024-11-18 广告
厦门君韦信息技术有限公司成立于2015年,是一家致力于提供专业服务的电子元件分销商,具有业界先进的质量和可靠性、强大的搜索供应实力、专业的服务能力。厦门君韦主要深耕于图像识别技术研究与开发,同时助推于通信、工控、电力、汽车等行业客户的供应链...
点击进入详情页
本回答由厦门君韦信息技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询