直角三角形全等判定hl
1个回答
展开全部
直角三角形全等判定hl:
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB+AC=BC(勾股定理)。
2、在直角三角形中,两个锐角互余。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
直角三角形特殊性质
它除了具有一般三角形的性质外,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图2,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图2,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |