怎样理解列秩和行秩
1个回答
展开全部
一个矩阵中行秩与列秩是相等的。 一般把矩阵的行秩与列秩统称为矩阵的秩。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目,类似地,行秩是A的线性无关的横行的极大数目。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目,类似地,行秩是A的线性无关的横行的极大数目。
扩展资料
矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。
行秩与列秩的'关系:
一个矩阵中行秩与列秩是相等的。
一般把矩阵的行秩与列秩统称为矩阵的秩。
矩阵的秩:
(1)在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目;类似地,行秩是A的线性无关的横行的极大数目。
(2)通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
变化规律:
(1)转置后秩不变
(2)r(A)<=min(m,n),A是m*n型矩阵
(3)r(kA)=r(A),k不等于0
(4)r(A)=0 <=> A=0
(5)r(A+B)<=r(A)+r(B)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询