极限计算:该题如何计算极限?
展开全部
lim<x→∞>x^3{[(x^3+x)/(x^6+x^3+1)]^(1/3) - sin(1/x)}
= lim<x→∞>{[(x^6+x^4)/(x^6+x^3+1)]^(1/3) - sin(1/x)}/(1/x^2)
= lim<x→∞>{[(1+1/x^2)/(1+1/x^3+1/x^6)]^(1/3) - sin(1/x)}/(1/x^2) (1/x = t)
= lim<t→0>{[(1+t^2)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[(1+t^3+t^6+t^2-t^3-t^6)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[1 + (t^2-t^3-t^6)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[1+(1/3)(t^2-t^3-t^6) - (1-t^3/6)}/t^2
= lim<t→0>[(1/3)t^2+o(t^2)]/t^2 = 1/3
= lim<x→∞>{[(x^6+x^4)/(x^6+x^3+1)]^(1/3) - sin(1/x)}/(1/x^2)
= lim<x→∞>{[(1+1/x^2)/(1+1/x^3+1/x^6)]^(1/3) - sin(1/x)}/(1/x^2) (1/x = t)
= lim<t→0>{[(1+t^2)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[(1+t^3+t^6+t^2-t^3-t^6)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[1 + (t^2-t^3-t^6)/(1+t^3+t^6)]^(1/3) - sint}/t^2
= lim<t→0>{[1+(1/3)(t^2-t^3-t^6) - (1-t^3/6)}/t^2
= lim<t→0>[(1/3)t^2+o(t^2)]/t^2 = 1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询